3.56 \(\int \frac{e+f x}{(2^{2/3}+x) \sqrt{1+x^3}} \, dx\)

Optimal. Leaf size=159 \[ \frac{2 \left (e-2^{2/3} f\right ) \tan ^{-1}\left (\frac{\sqrt{3} \left (\sqrt [3]{2} x+1\right )}{\sqrt{x^3+1}}\right )}{3 \sqrt{3}}+\frac{2 \sqrt{2+\sqrt{3}} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (\sqrt [3]{2} e+f\right ) F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{3 \sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}} \]

[Out]

(2*(e - 2^(2/3)*f)*ArcTan[(Sqrt[3]*(1 + 2^(1/3)*x))/Sqrt[1 + x^3]])/(3*Sqrt[3]) + (2*Sqrt[2 + Sqrt[3]]*(2^(1/3
)*e + f)*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)]
, -7 - 4*Sqrt[3]])/(3*3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.23216, antiderivative size = 159, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {2139, 218, 2137, 203} \[ \frac{2 \left (e-2^{2/3} f\right ) \tan ^{-1}\left (\frac{\sqrt{3} \left (\sqrt [3]{2} x+1\right )}{\sqrt{x^3+1}}\right )}{3 \sqrt{3}}+\frac{2 \sqrt{2+\sqrt{3}} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (\sqrt [3]{2} e+f\right ) F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{3 \sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}} \]

Antiderivative was successfully verified.

[In]

Int[(e + f*x)/((2^(2/3) + x)*Sqrt[1 + x^3]),x]

[Out]

(2*(e - 2^(2/3)*f)*ArcTan[(Sqrt[3]*(1 + 2^(1/3)*x))/Sqrt[1 + x^3]])/(3*Sqrt[3]) + (2*Sqrt[2 + Sqrt[3]]*(2^(1/3
)*e + f)*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)]
, -7 - 4*Sqrt[3]])/(3*3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])

Rule 2139

Int[((e_.) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[(2*d*e + c*f)/(3*c
*d), Int[1/Sqrt[a + b*x^3], x], x] + Dist[(d*e - c*f)/(3*c*d), Int[(c - 2*d*x)/((c + d*x)*Sqrt[a + b*x^3]), x]
, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && (EqQ[b*c^3 - 4*a*d^3, 0] || EqQ[b*c^3 + 8*a*d^3,
0]) && NeQ[2*d*e + c*f, 0]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 2137

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Dist[(2*e)/d, Subst[Int[
1/(1 + 3*a*x^2), x], x, (1 + (2*d*x)/c)/Sqrt[a + b*x^3]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f,
 0] && EqQ[b*c^3 - 4*a*d^3, 0] && EqQ[2*d*e + c*f, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{e+f x}{\left (2^{2/3}+x\right ) \sqrt{1+x^3}} \, dx &=\frac{1}{6} \left (\sqrt [3]{2} e-2 f\right ) \int \frac{2^{2/3}-2 x}{\left (2^{2/3}+x\right ) \sqrt{1+x^3}} \, dx+\frac{1}{3} \left (\sqrt [3]{2} e+f\right ) \int \frac{1}{\sqrt{1+x^3}} \, dx\\ &=\frac{2 \sqrt{2+\sqrt{3}} \left (\sqrt [3]{2} e+f\right ) (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{3 \sqrt [4]{3} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}+\frac{1}{3} \left (2 \left (e-2^{2/3} f\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1+3 x^2} \, dx,x,\frac{1+\sqrt [3]{2} x}{\sqrt{1+x^3}}\right )\\ &=\frac{2 \left (e-2^{2/3} f\right ) \tan ^{-1}\left (\frac{\sqrt{3} \left (1+\sqrt [3]{2} x\right )}{\sqrt{1+x^3}}\right )}{3 \sqrt{3}}+\frac{2 \sqrt{2+\sqrt{3}} \left (\sqrt [3]{2} e+f\right ) (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{3 \sqrt [4]{3} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}\\ \end{align*}

Mathematica [C]  time = 0.470311, size = 340, normalized size = 2.14 \[ \frac{2 \sqrt [6]{2} \sqrt{\frac{i (x+1)}{\sqrt{3}+3 i}} \left (f \sqrt{2 i x+\sqrt{3}-i} \left (\left (3 \sqrt [3]{2}+4 i \sqrt{3}+i \sqrt [3]{2} \sqrt{3}\right ) x+i \sqrt [3]{2} \sqrt{3}-2 i \sqrt{3}-3 \sqrt [3]{2}-6\right ) F\left (\sin ^{-1}\left (\frac{\sqrt{-2 i x+\sqrt{3}+i}}{\sqrt{2} \sqrt [4]{3}}\right )|\frac{2 \sqrt{3}}{3 i+\sqrt{3}}\right )-2 \sqrt{3} \sqrt{-2 i x+\sqrt{3}+i} \sqrt{x^2-x+1} \left (\sqrt [3]{2} e-2 f\right ) \Pi \left (\frac{2 \sqrt{3}}{i+2 i 2^{2/3}+\sqrt{3}};\sin ^{-1}\left (\frac{\sqrt{-2 i x+\sqrt{3}+i}}{\sqrt{2} \sqrt [4]{3}}\right )|\frac{2 \sqrt{3}}{3 i+\sqrt{3}}\right )\right )}{\sqrt{3} \left (i+2 i 2^{2/3}+\sqrt{3}\right ) \sqrt{-2 i x+\sqrt{3}+i} \sqrt{x^3+1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(e + f*x)/((2^(2/3) + x)*Sqrt[1 + x^3]),x]

[Out]

(2*2^(1/6)*Sqrt[(I*(1 + x))/(3*I + Sqrt[3])]*(f*Sqrt[-I + Sqrt[3] + (2*I)*x]*(-6 - 3*2^(1/3) - (2*I)*Sqrt[3] +
 I*2^(1/3)*Sqrt[3] + (3*2^(1/3) + (4*I)*Sqrt[3] + I*2^(1/3)*Sqrt[3])*x)*EllipticF[ArcSin[Sqrt[I + Sqrt[3] - (2
*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(3*I + Sqrt[3])] - 2*Sqrt[3]*(2^(1/3)*e - 2*f)*Sqrt[I + Sqrt[3] - (2*I)
*x]*Sqrt[1 - x + x^2]*EllipticPi[(2*Sqrt[3])/(I + (2*I)*2^(2/3) + Sqrt[3]), ArcSin[Sqrt[I + Sqrt[3] - (2*I)*x]
/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(3*I + Sqrt[3])]))/(Sqrt[3]*(I + (2*I)*2^(2/3) + Sqrt[3])*Sqrt[I + Sqrt[3] -
(2*I)*x]*Sqrt[1 + x^3])

________________________________________________________________________________________

Maple [B]  time = 0.023, size = 264, normalized size = 1.7 \begin{align*} 2\,{\frac{f \left ( 3/2-i/2\sqrt{3} \right ) }{\sqrt{{x}^{3}+1}}\sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2-i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2+i/2\sqrt{3}}{-3/2+i/2\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}},\sqrt{{\frac{-3/2+i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}} \right ) }+2\,{\frac{ \left ( e-{2}^{2/3}f \right ) \left ( 3/2-i/2\sqrt{3} \right ) }{\sqrt{{x}^{3}+1} \left ({2}^{2/3}-1 \right ) }\sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2-i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2+i/2\sqrt{3}}{-3/2+i/2\sqrt{3}}}}{\it EllipticPi} \left ( \sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}},{\frac{-3/2+i/2\sqrt{3}}{{2}^{2/3}-1}},\sqrt{{\frac{-3/2+i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x+e)/(2^(2/3)+x)/(x^3+1)^(1/2),x)

[Out]

2*f*(3/2-1/2*I*3^(1/2))*((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*(
(x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*EllipticF(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),((
-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))+2*(e-2^(2/3)*f)*(3/2-1/2*I*3^(1/2))*((1+x)/(3/2-1/2*I*3^(1/2)
))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)
/(x^3+1)^(1/2)/(2^(2/3)-1)*EllipticPi(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),(-3/2+1/2*I*3^(1/2))/(2^(2/3)-1),((-3/
2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{f x + e}{\sqrt{x^{3} + 1}{\left (x + 2^{\frac{2}{3}}\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(2^(2/3)+x)/(x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate((f*x + e)/(sqrt(x^3 + 1)*(x + 2^(2/3))), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(2^(2/3)+x)/(x^3+1)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e + f x}{\sqrt{\left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (x + 2^{\frac{2}{3}}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(2**(2/3)+x)/(x**3+1)**(1/2),x)

[Out]

Integral((e + f*x)/(sqrt((x + 1)*(x**2 - x + 1))*(x + 2**(2/3))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{f x + e}{\sqrt{x^{3} + 1}{\left (x + 2^{\frac{2}{3}}\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(2^(2/3)+x)/(x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate((f*x + e)/(sqrt(x^3 + 1)*(x + 2^(2/3))), x)