3.516 \(\int \frac{(d+e x+f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}})^n}{\sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}} \, dx\)

Optimal. Leaf size=41 \[ \frac{f \left (f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}+d+e x\right )^n}{e n} \]

[Out]

(f*(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^n)/(e*n)

________________________________________________________________________________________

Rubi [A]  time = 0.25443, antiderivative size = 41, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 58, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.052, Rules used = {2121, 12, 30} \[ \frac{f \left (f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}+d+e x\right )^n}{e n} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^n/Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2],x]

[Out]

(f*(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^n)/(e*n)

Rule 2121

Int[((g_.) + (h_.)*(x_) + (i_.)*(x_)^2)^(m_.)*((d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)
^2])^(n_.), x_Symbol] :> Dist[(2*(i/c)^m)/f^(2*m), Subst[Int[(x^n*(d^2*e - (b*d - a*e)*f^2 - (2*d*e - b*f^2)*x
 + e*x^2)^(2*m + 1))/(-2*d*e + b*f^2 + 2*e*x)^(2*(m + 1)), x], x, d + e*x + f*Sqrt[a + b*x + c*x^2]], x] /; Fr
eeQ[{a, b, c, d, e, f, g, h, i, n}, x] && EqQ[e^2 - c*f^2, 0] && EqQ[c*g - a*i, 0] && EqQ[c*h - b*i, 0] && Int
egerQ[2*m] && (IntegerQ[m] || GtQ[i/c, 0])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rubi steps

\begin{align*} \int \frac{\left (d+e x+f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}\right )^n}{\sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}} \, dx &=(2 f) \operatorname{Subst}\left (\int \frac{x^{-1+n}}{2 e} \, dx,x,d+e x+f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}\right )\\ &=\frac{f \operatorname{Subst}\left (\int x^{-1+n} \, dx,x,d+e x+f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}\right )}{e}\\ &=\frac{f \left (d+e x+f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}\right )^n}{e n}\\ \end{align*}

Mathematica [A]  time = 0.0678211, size = 36, normalized size = 0.88 \[ \frac{f \left (f \sqrt{a+\frac{e x (2 d+e x)}{f^2}}+d+e x\right )^n}{e n} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^n/Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2],x]

[Out]

(f*(d + e*x + f*Sqrt[a + (e*x*(2*d + e*x))/f^2])^n)/(e*n)

________________________________________________________________________________________

Maple [F]  time = 0.069, size = 0, normalized size = 0. \begin{align*} \int{ \left ( d+ex+f\sqrt{a+2\,{\frac{dex}{{f}^{2}}}+{\frac{{e}^{2}{x}^{2}}{{f}^{2}}}} \right ) ^{n}{\frac{1}{\sqrt{a+2\,{\frac{dex}{{f}^{2}}}+{\frac{{e}^{2}{x}^{2}}{{f}^{2}}}}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2),x)

[Out]

int((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + \sqrt{\frac{e^{2} x^{2}}{f^{2}} + a + \frac{2 \, d e x}{f^{2}}} f + d\right )}^{n}}{\sqrt{\frac{e^{2} x^{2}}{f^{2}} + a + \frac{2 \, d e x}{f^{2}}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2),x, algorithm="maxima
")

[Out]

integrate((e*x + sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2)*f + d)^n/sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2), x)

________________________________________________________________________________________

Fricas [A]  time = 1.01584, size = 85, normalized size = 2.07 \begin{align*} \frac{{\left (e x + f \sqrt{\frac{e^{2} x^{2} + a f^{2} + 2 \, d e x}{f^{2}}} + d\right )}^{n} f}{e n} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2),x, algorithm="fricas
")

[Out]

(e*x + f*sqrt((e^2*x^2 + a*f^2 + 2*d*e*x)/f^2) + d)^n*f/(e*n)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d + e x + f \sqrt{a + \frac{2 d e x}{f^{2}} + \frac{e^{2} x^{2}}{f^{2}}}\right )^{n}}{\sqrt{a + \frac{2 d e x}{f^{2}} + \frac{e^{2} x^{2}}{f^{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+2*d*e*x/f**2+e**2*x**2/f**2)**(1/2))**n/(a+2*d*e*x/f**2+e**2*x**2/f**2)**(1/2),x)

[Out]

Integral((d + e*x + f*sqrt(a + 2*d*e*x/f**2 + e**2*x**2/f**2))**n/sqrt(a + 2*d*e*x/f**2 + e**2*x**2/f**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + \sqrt{\frac{e^{2} x^{2}}{f^{2}} + a + \frac{2 \, d e x}{f^{2}}} f + d\right )}^{n}}{\sqrt{\frac{e^{2} x^{2}}{f^{2}} + a + \frac{2 \, d e x}{f^{2}}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2),x, algorithm="giac")

[Out]

integrate((e*x + sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2)*f + d)^n/sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2), x)