3.510 \(\int \frac{(d+e x+f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}})^n}{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}} \, dx\)

Optimal. Leaf size=122 \[ -\frac{2 f^2 \left (f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}+d+e x\right )^{n+1} \, _2F_1\left (1,\frac{n+1}{2};\frac{n+3}{2};\frac{\left (d+e x+f \sqrt{\frac{e^2 x^2}{f^2}+\frac{2 d e x}{f^2}+a}\right )^2}{d^2-a f^2}\right )}{e (n+1) \left (d^2-a f^2\right )} \]

[Out]

(-2*f^2*(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^(1 + n)*Hypergeometric2F1[1, (1 + n)/2, (3 + n)/
2, (d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^2/(d^2 - a*f^2)])/(e*(d^2 - a*f^2)*(1 + n))

________________________________________________________________________________________

Rubi [A]  time = 0.292669, antiderivative size = 122, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 56, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.036, Rules used = {2121, 364} \[ -\frac{2 f^2 \left (f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}+d+e x\right )^{n+1} \, _2F_1\left (1,\frac{n+1}{2};\frac{n+3}{2};\frac{\left (d+e x+f \sqrt{\frac{e^2 x^2}{f^2}+\frac{2 d e x}{f^2}+a}\right )^2}{d^2-a f^2}\right )}{e (n+1) \left (d^2-a f^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^n/(a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2),x]

[Out]

(-2*f^2*(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^(1 + n)*Hypergeometric2F1[1, (1 + n)/2, (3 + n)/
2, (d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^2/(d^2 - a*f^2)])/(e*(d^2 - a*f^2)*(1 + n))

Rule 2121

Int[((g_.) + (h_.)*(x_) + (i_.)*(x_)^2)^(m_.)*((d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)
^2])^(n_.), x_Symbol] :> Dist[(2*(i/c)^m)/f^(2*m), Subst[Int[(x^n*(d^2*e - (b*d - a*e)*f^2 - (2*d*e - b*f^2)*x
 + e*x^2)^(2*m + 1))/(-2*d*e + b*f^2 + 2*e*x)^(2*(m + 1)), x], x, d + e*x + f*Sqrt[a + b*x + c*x^2]], x] /; Fr
eeQ[{a, b, c, d, e, f, g, h, i, n}, x] && EqQ[e^2 - c*f^2, 0] && EqQ[c*g - a*i, 0] && EqQ[c*h - b*i, 0] && Int
egerQ[2*m] && (IntegerQ[m] || GtQ[i/c, 0])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{\left (d+e x+f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}\right )^n}{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}} \, dx &=\left (2 f^2\right ) \operatorname{Subst}\left (\int \frac{x^n}{d^2 e-\left (-a e+\frac{2 d^2 e}{f^2}\right ) f^2+e x^2} \, dx,x,d+e x+f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}\right )\\ &=-\frac{2 f^2 \left (d+e x+f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}\right )^{1+n} \, _2F_1\left (1,\frac{1+n}{2};\frac{3+n}{2};\frac{\left (d+e x+f \sqrt{a+\frac{2 d e x}{f^2}+\frac{e^2 x^2}{f^2}}\right )^2}{d^2-a f^2}\right )}{e \left (d^2-a f^2\right ) (1+n)}\\ \end{align*}

Mathematica [A]  time = 0.14492, size = 112, normalized size = 0.92 \[ -\frac{2 f^2 \left (f \sqrt{a+\frac{e x (2 d+e x)}{f^2}}+d+e x\right )^{n+1} \, _2F_1\left (1,\frac{n+1}{2};\frac{n+3}{2};\frac{\left (d+e x+f \sqrt{a+\frac{e x (2 d+e x)}{f^2}}\right )^2}{d^2-a f^2}\right )}{e (n+1) \left (d^2-a f^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x + f*Sqrt[a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2])^n/(a + (2*d*e*x)/f^2 + (e^2*x^2)/f^2),x]

[Out]

(-2*f^2*(d + e*x + f*Sqrt[a + (e*x*(2*d + e*x))/f^2])^(1 + n)*Hypergeometric2F1[1, (1 + n)/2, (3 + n)/2, (d +
e*x + f*Sqrt[a + (e*x*(2*d + e*x))/f^2])^2/(d^2 - a*f^2)])/(e*(d^2 - a*f^2)*(1 + n))

________________________________________________________________________________________

Maple [F]  time = 0.105, size = 0, normalized size = 0. \begin{align*} \int{ \left ( d+ex+f\sqrt{a+2\,{\frac{dex}{{f}^{2}}}+{\frac{{e}^{2}{x}^{2}}{{f}^{2}}}} \right ) ^{n} \left ( a+2\,{\frac{dex}{{f}^{2}}}+{\frac{{e}^{2}{x}^{2}}{{f}^{2}}} \right ) ^{-1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a+2*d*e*x/f^2+e^2*x^2/f^2),x)

[Out]

int((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a+2*d*e*x/f^2+e^2*x^2/f^2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + \sqrt{\frac{e^{2} x^{2}}{f^{2}} + a + \frac{2 \, d e x}{f^{2}}} f + d\right )}^{n}}{\frac{e^{2} x^{2}}{f^{2}} + a + \frac{2 \, d e x}{f^{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a+2*d*e*x/f^2+e^2*x^2/f^2),x, algorithm="maxima")

[Out]

integrate((e*x + sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2)*f + d)^n/(e^2*x^2/f^2 + a + 2*d*e*x/f^2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (e x + f \sqrt{\frac{e^{2} x^{2} + a f^{2} + 2 \, d e x}{f^{2}}} + d\right )}^{n} f^{2}}{e^{2} x^{2} + a f^{2} + 2 \, d e x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a+2*d*e*x/f^2+e^2*x^2/f^2),x, algorithm="fricas")

[Out]

integral((e*x + f*sqrt((e^2*x^2 + a*f^2 + 2*d*e*x)/f^2) + d)^n*f^2/(e^2*x^2 + a*f^2 + 2*d*e*x), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+2*d*e*x/f**2+e**2*x**2/f**2)**(1/2))**n/(a+2*d*e*x/f**2+e**2*x**2/f**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + \sqrt{\frac{e^{2} x^{2}}{f^{2}} + a + \frac{2 \, d e x}{f^{2}}} f + d\right )}^{n}}{\frac{e^{2} x^{2}}{f^{2}} + a + \frac{2 \, d e x}{f^{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d+e*x+f*(a+2*d*e*x/f^2+e^2*x^2/f^2)^(1/2))^n/(a+2*d*e*x/f^2+e^2*x^2/f^2),x, algorithm="giac")

[Out]

integrate((e*x + sqrt(e^2*x^2/f^2 + a + 2*d*e*x/f^2)*f + d)^n/(e^2*x^2/f^2 + a + 2*d*e*x/f^2), x)