3.395 \(\int \frac{\sqrt{a x^{n/2}}}{\sqrt{1+x^n}} \, dx\)

Optimal. Leaf size=52 \[ \frac{4 x \sqrt{a x^{n/2}} \, _2F_1\left (\frac{1}{2},\frac{1}{4} \left (1+\frac{4}{n}\right );\frac{1}{4} \left (5+\frac{4}{n}\right );-x^n\right )}{n+4} \]

[Out]

(4*x*Sqrt[a*x^(n/2)]*Hypergeometric2F1[1/2, (1 + 4/n)/4, (5 + 4/n)/4, -x^n])/(4 + n)

________________________________________________________________________________________

Rubi [A]  time = 0.0148895, antiderivative size = 52, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.087, Rules used = {15, 364} \[ \frac{4 x \sqrt{a x^{n/2}} \, _2F_1\left (\frac{1}{2},\frac{1}{4} \left (1+\frac{4}{n}\right );\frac{1}{4} \left (5+\frac{4}{n}\right );-x^n\right )}{n+4} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a*x^(n/2)]/Sqrt[1 + x^n],x]

[Out]

(4*x*Sqrt[a*x^(n/2)]*Hypergeometric2F1[1/2, (1 + 4/n)/4, (5 + 4/n)/4, -x^n])/(4 + n)

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[(a^IntPart[m]*(a*x^n)^FracPart[m])/x^(n*FracPart[m]), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{a x^{n/2}}}{\sqrt{1+x^n}} \, dx &=\left (x^{-n/4} \sqrt{a x^{n/2}}\right ) \int \frac{x^{n/4}}{\sqrt{1+x^n}} \, dx\\ &=\frac{4 x \sqrt{a x^{n/2}} \, _2F_1\left (\frac{1}{2},\frac{1}{4} \left (1+\frac{4}{n}\right );\frac{1}{4} \left (5+\frac{4}{n}\right );-x^n\right )}{4+n}\\ \end{align*}

Mathematica [A]  time = 0.0115588, size = 44, normalized size = 0.85 \[ \frac{4 x \sqrt{a x^{n/2}} \, _2F_1\left (\frac{1}{2},\frac{1}{4}+\frac{1}{n};\frac{5}{4}+\frac{1}{n};-x^n\right )}{n+4} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a*x^(n/2)]/Sqrt[1 + x^n],x]

[Out]

(4*x*Sqrt[a*x^(n/2)]*Hypergeometric2F1[1/2, 1/4 + n^(-1), 5/4 + n^(-1), -x^n])/(4 + n)

________________________________________________________________________________________

Maple [A]  time = 0.064, size = 37, normalized size = 0.7 \begin{align*} 4\,{\frac{x{\mbox{$_2$F$_1$}(1/2,1/4+{n}^{-1};\,5/4+{n}^{-1};\,-{x}^{n})}\sqrt{a{x}^{n/2}}}{4+n}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*x^(1/2*n))^(1/2)/(1+x^n)^(1/2),x)

[Out]

4*x*hypergeom([1/2,1/4+1/n],[5/4+1/n],-x^n)*(a*x^(1/2*n))^(1/2)/(4+n)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a x^{\frac{1}{2} \, n}}}{\sqrt{x^{n} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^(1/2*n))^(1/2)/(1+x^n)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*x^(1/2*n))/sqrt(x^n + 1), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^(1/2*n))^(1/2)/(1+x^n)^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a x^{\frac{n}{2}}}}{\sqrt{x^{n} + 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x**(1/2*n))**(1/2)/(1+x**n)**(1/2),x)

[Out]

Integral(sqrt(a*x**(n/2))/sqrt(x**n + 1), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a x^{\frac{1}{2} \, n}}}{\sqrt{x^{n} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*x^(1/2*n))^(1/2)/(1+x^n)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*x^(1/2*n))/sqrt(x^n + 1), x)