3.381 \(\int \frac{\sqrt{\frac{a}{x}}}{\sqrt{1+x^2}} \, dx\)

Optimal. Leaf size=54 \[ \frac{\sqrt{x} (x+1) \sqrt{\frac{x^2+1}{(x+1)^2}} \sqrt{\frac{a}{x}} F\left (2 \tan ^{-1}\left (\sqrt{x}\right )|\frac{1}{2}\right )}{\sqrt{x^2+1}} \]

[Out]

(Sqrt[a/x]*Sqrt[x]*(1 + x)*Sqrt[(1 + x^2)/(1 + x)^2]*EllipticF[2*ArcTan[Sqrt[x]], 1/2])/Sqrt[1 + x^2]

________________________________________________________________________________________

Rubi [A]  time = 0.0206193, antiderivative size = 54, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {15, 329, 220} \[ \frac{\sqrt{x} (x+1) \sqrt{\frac{x^2+1}{(x+1)^2}} \sqrt{\frac{a}{x}} F\left (2 \tan ^{-1}\left (\sqrt{x}\right )|\frac{1}{2}\right )}{\sqrt{x^2+1}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a/x]/Sqrt[1 + x^2],x]

[Out]

(Sqrt[a/x]*Sqrt[x]*(1 + x)*Sqrt[(1 + x^2)/(1 + x)^2]*EllipticF[2*ArcTan[Sqrt[x]], 1/2])/Sqrt[1 + x^2]

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[(a^IntPart[m]*(a*x^n)^FracPart[m])/x^(n*FracPart[m]), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{\sqrt{\frac{a}{x}}}{\sqrt{1+x^2}} \, dx &=\left (\sqrt{\frac{a}{x}} \sqrt{x}\right ) \int \frac{1}{\sqrt{x} \sqrt{1+x^2}} \, dx\\ &=\left (2 \sqrt{\frac{a}{x}} \sqrt{x}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+x^4}} \, dx,x,\sqrt{x}\right )\\ &=\frac{\sqrt{\frac{a}{x}} \sqrt{x} (1+x) \sqrt{\frac{1+x^2}{(1+x)^2}} F\left (2 \tan ^{-1}\left (\sqrt{x}\right )|\frac{1}{2}\right )}{\sqrt{1+x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0046895, size = 27, normalized size = 0.5 \[ 2 x \sqrt{\frac{a}{x}} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-x^2\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a/x]/Sqrt[1 + x^2],x]

[Out]

2*Sqrt[a/x]*x*Hypergeometric2F1[1/4, 1/2, 5/4, -x^2]

________________________________________________________________________________________

Maple [C]  time = 0.024, size = 62, normalized size = 1.2 \begin{align*}{i\sqrt{2}\sqrt{{\frac{a}{x}}}\sqrt{-i \left ( x+i \right ) }\sqrt{-i \left ( -x+i \right ) }\sqrt{ix}{\it EllipticF} \left ( \sqrt{-i \left ( x+i \right ) },{\frac{\sqrt{2}}{2}} \right ){\frac{1}{\sqrt{{x}^{2}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a/x)^(1/2)/(x^2+1)^(1/2),x)

[Out]

I*(a/x)^(1/2)/(x^2+1)^(1/2)*(-I*(x+I))^(1/2)*2^(1/2)*(-I*(-x+I))^(1/2)*(I*x)^(1/2)*EllipticF((-I*(x+I))^(1/2),
1/2*2^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\frac{a}{x}}}{\sqrt{x^{2} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a/x)^(1/2)/(x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a/x)/sqrt(x^2 + 1), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{\frac{a}{x}}}{\sqrt{x^{2} + 1}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a/x)^(1/2)/(x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(a/x)/sqrt(x^2 + 1), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\frac{a}{x}}}{\sqrt{x^{2} + 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a/x)**(1/2)/(x**2+1)**(1/2),x)

[Out]

Integral(sqrt(a/x)/sqrt(x**2 + 1), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\frac{a}{x}}}{\sqrt{x^{2} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a/x)^(1/2)/(x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a/x)/sqrt(x^2 + 1), x)