3.345 \(\int \frac{x^3}{\sqrt{a+\frac{b}{c+d x^2}}} \, dx\)

Optimal. Leaf size=148 \[ -\frac{(4 a c+3 b) \left (c+d x^2\right ) \sqrt{\frac{a c+a d x^2+b}{c+d x^2}}}{8 a^2 d^2}+\frac{b (4 a c+3 b) \tanh ^{-1}\left (\frac{\sqrt{\frac{a c+a d x^2+b}{c+d x^2}}}{\sqrt{a}}\right )}{8 a^{5/2} d^2}+\frac{\left (c+d x^2\right )^2 \sqrt{\frac{a c+a d x^2+b}{c+d x^2}}}{4 a d^2} \]

[Out]

-((3*b + 4*a*c)*(c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])/(8*a^2*d^2) + ((c + d*x^2)^2*Sqrt[(b + a*c
+ a*d*x^2)/(c + d*x^2)])/(4*a*d^2) + (b*(3*b + 4*a*c)*ArcTanh[Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]/Sqrt[a]])/
(8*a^(5/2)*d^2)

________________________________________________________________________________________

Rubi [A]  time = 0.464804, antiderivative size = 189, normalized size of antiderivative = 1.28, number of steps used = 8, number of rules used = 8, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.381, Rules used = {6722, 1975, 446, 80, 50, 63, 217, 206} \[ -\frac{(4 a c+3 b) \left (a \left (c+d x^2\right )+b\right )}{8 a^2 d^2 \sqrt{a+\frac{b}{c+d x^2}}}+\frac{b (4 a c+3 b) \sqrt{a \left (c+d x^2\right )+b} \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{c+d x^2}}{\sqrt{a \left (c+d x^2\right )+b}}\right )}{8 a^{5/2} d^2 \sqrt{c+d x^2} \sqrt{a+\frac{b}{c+d x^2}}}+\frac{\left (c+d x^2\right ) \left (a \left (c+d x^2\right )+b\right )}{4 a d^2 \sqrt{a+\frac{b}{c+d x^2}}} \]

Antiderivative was successfully verified.

[In]

Int[x^3/Sqrt[a + b/(c + d*x^2)],x]

[Out]

-((3*b + 4*a*c)*(b + a*(c + d*x^2)))/(8*a^2*d^2*Sqrt[a + b/(c + d*x^2)]) + ((c + d*x^2)*(b + a*(c + d*x^2)))/(
4*a*d^2*Sqrt[a + b/(c + d*x^2)]) + (b*(3*b + 4*a*c)*Sqrt[b + a*(c + d*x^2)]*ArcTanh[(Sqrt[a]*Sqrt[c + d*x^2])/
Sqrt[b + a*(c + d*x^2)]])/(8*a^(5/2)*d^2*Sqrt[c + d*x^2]*Sqrt[a + b/(c + d*x^2)])

Rule 6722

Int[(u_.)*((a_.) + (b_.)*(v_)^(n_))^(p_), x_Symbol] :> Dist[(a + b*v^n)^FracPart[p]/(v^(n*FracPart[p])*(b + a/
v^n)^FracPart[p]), Int[u*v^(n*p)*(b + a/v^n)^p, x], x] /; FreeQ[{a, b, p}, x] &&  !IntegerQ[p] && ILtQ[n, 0] &
& BinomialQ[v, x] &&  !LinearQ[v, x]

Rule 1975

Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*ExpandToSum[u, x]^p*ExpandToSum[v, x]^q
, x] /; FreeQ[{e, m, p, q}, x] && BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0]
&&  !BinomialMatchQ[{u, v}, x]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^3}{\sqrt{a+\frac{b}{c+d x^2}}} \, dx &=\frac{\sqrt{b+a \left (c+d x^2\right )} \int \frac{x^3 \sqrt{c+d x^2}}{\sqrt{b+a \left (c+d x^2\right )}} \, dx}{\sqrt{c+d x^2} \sqrt{a+\frac{b}{c+d x^2}}}\\ &=\frac{\sqrt{b+a \left (c+d x^2\right )} \int \frac{x^3 \sqrt{c+d x^2}}{\sqrt{b+a c+a d x^2}} \, dx}{\sqrt{c+d x^2} \sqrt{a+\frac{b}{c+d x^2}}}\\ &=\frac{\sqrt{b+a \left (c+d x^2\right )} \operatorname{Subst}\left (\int \frac{x \sqrt{c+d x}}{\sqrt{b+a c+a d x}} \, dx,x,x^2\right )}{2 \sqrt{c+d x^2} \sqrt{a+\frac{b}{c+d x^2}}}\\ &=\frac{\left (c+d x^2\right ) \left (b+a \left (c+d x^2\right )\right )}{4 a d^2 \sqrt{a+\frac{b}{c+d x^2}}}-\frac{\left ((3 b+4 a c) \sqrt{b+a \left (c+d x^2\right )}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{c+d x}}{\sqrt{b+a c+a d x}} \, dx,x,x^2\right )}{8 a d \sqrt{c+d x^2} \sqrt{a+\frac{b}{c+d x^2}}}\\ &=-\frac{(3 b+4 a c) \left (b+a \left (c+d x^2\right )\right )}{8 a^2 d^2 \sqrt{a+\frac{b}{c+d x^2}}}+\frac{\left (c+d x^2\right ) \left (b+a \left (c+d x^2\right )\right )}{4 a d^2 \sqrt{a+\frac{b}{c+d x^2}}}+\frac{\left (b (3 b+4 a c) \sqrt{b+a \left (c+d x^2\right )}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c+d x} \sqrt{b+a c+a d x}} \, dx,x,x^2\right )}{16 a^2 d \sqrt{c+d x^2} \sqrt{a+\frac{b}{c+d x^2}}}\\ &=-\frac{(3 b+4 a c) \left (b+a \left (c+d x^2\right )\right )}{8 a^2 d^2 \sqrt{a+\frac{b}{c+d x^2}}}+\frac{\left (c+d x^2\right ) \left (b+a \left (c+d x^2\right )\right )}{4 a d^2 \sqrt{a+\frac{b}{c+d x^2}}}+\frac{\left (b (3 b+4 a c) \sqrt{b+a \left (c+d x^2\right )}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{b+a x^2}} \, dx,x,\sqrt{c+d x^2}\right )}{8 a^2 d^2 \sqrt{c+d x^2} \sqrt{a+\frac{b}{c+d x^2}}}\\ &=-\frac{(3 b+4 a c) \left (b+a \left (c+d x^2\right )\right )}{8 a^2 d^2 \sqrt{a+\frac{b}{c+d x^2}}}+\frac{\left (c+d x^2\right ) \left (b+a \left (c+d x^2\right )\right )}{4 a d^2 \sqrt{a+\frac{b}{c+d x^2}}}+\frac{\left (b (3 b+4 a c) \sqrt{b+a \left (c+d x^2\right )}\right ) \operatorname{Subst}\left (\int \frac{1}{1-a x^2} \, dx,x,\frac{\sqrt{c+d x^2}}{\sqrt{b+a \left (c+d x^2\right )}}\right )}{8 a^2 d^2 \sqrt{c+d x^2} \sqrt{a+\frac{b}{c+d x^2}}}\\ &=-\frac{(3 b+4 a c) \left (b+a \left (c+d x^2\right )\right )}{8 a^2 d^2 \sqrt{a+\frac{b}{c+d x^2}}}+\frac{\left (c+d x^2\right ) \left (b+a \left (c+d x^2\right )\right )}{4 a d^2 \sqrt{a+\frac{b}{c+d x^2}}}+\frac{b (3 b+4 a c) \sqrt{b+a \left (c+d x^2\right )} \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{c+d x^2}}{\sqrt{b+a \left (c+d x^2\right )}}\right )}{8 a^{5/2} d^2 \sqrt{c+d x^2} \sqrt{a+\frac{b}{c+d x^2}}}\\ \end{align*}

Mathematica [A]  time = 0.163918, size = 101, normalized size = 0.68 \[ \frac{b (4 a c+3 b) \tanh ^{-1}\left (\frac{\sqrt{a+\frac{b}{c+d x^2}}}{\sqrt{a}}\right )-\sqrt{a} \left (c+d x^2\right ) \sqrt{\frac{a c+a d x^2+b}{c+d x^2}} \left (2 a \left (c-d x^2\right )+3 b\right )}{8 a^{5/2} d^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3/Sqrt[a + b/(c + d*x^2)],x]

[Out]

(-(Sqrt[a]*(c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*(3*b + 2*a*(c - d*x^2))) + b*(3*b + 4*a*c)*ArcTan
h[Sqrt[a + b/(c + d*x^2)]/Sqrt[a]])/(8*a^(5/2)*d^2)

________________________________________________________________________________________

Maple [B]  time = 0.013, size = 354, normalized size = 2.4 \begin{align*}{\frac{d{x}^{2}+c}{16\,{a}^{2}{d}^{2}}\sqrt{{\frac{ad{x}^{2}+ac+b}{d{x}^{2}+c}}} \left ( 4\,\sqrt{a{d}^{2}{x}^{4}+2\,acd{x}^{2}+bd{x}^{2}+{c}^{2}a+bc}\sqrt{a{d}^{2}}{x}^{2}ad+4\,\ln \left ( 1/2\,{\frac{2\,a{d}^{2}{x}^{2}+2\,acd+2\,\sqrt{a{d}^{2}{x}^{4}+2\,acd{x}^{2}+bd{x}^{2}+{c}^{2}a+bc}\sqrt{a{d}^{2}}+bd}{\sqrt{a{d}^{2}}}} \right ) abcd-4\,\sqrt{a{d}^{2}{x}^{4}+2\,acd{x}^{2}+bd{x}^{2}+{c}^{2}a+bc}\sqrt{a{d}^{2}}ac+3\,\ln \left ( 1/2\,{\frac{2\,a{d}^{2}{x}^{2}+2\,acd+2\,\sqrt{a{d}^{2}{x}^{4}+2\,acd{x}^{2}+bd{x}^{2}+{c}^{2}a+bc}\sqrt{a{d}^{2}}+bd}{\sqrt{a{d}^{2}}}} \right ){b}^{2}d-6\,\sqrt{a{d}^{2}{x}^{4}+2\,acd{x}^{2}+bd{x}^{2}+{c}^{2}a+bc}\sqrt{a{d}^{2}}b \right ){\frac{1}{\sqrt{ \left ( d{x}^{2}+c \right ) \left ( ad{x}^{2}+ac+b \right ) }}}{\frac{1}{\sqrt{a{d}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(a+b/(d*x^2+c))^(1/2),x)

[Out]

1/16*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)*(d*x^2+c)/d^2*(4*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(a*d^2
)^(1/2)*x^2*a*d+4*ln(1/2*(2*a*d^2*x^2+2*a*c*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(a*d^2)^(1/2)+
b*d)/(a*d^2)^(1/2))*a*b*c*d-4*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(a*d^2)^(1/2)*a*c+3*ln(1/2*(2*a*
d^2*x^2+2*a*c*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(a*d^2)^(1/2)+b*d)/(a*d^2)^(1/2))*b^2*d-6*(a
*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(a*d^2)^(1/2)*b)/((d*x^2+c)*(a*d*x^2+a*c+b))^(1/2)/a^2/(a*d^2)^(
1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(a+b/(d*x^2+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.3725, size = 761, normalized size = 5.14 \begin{align*} \left [\frac{{\left (4 \, a b c + 3 \, b^{2}\right )} \sqrt{a} \log \left (8 \, a^{2} d^{2} x^{4} + 8 \, a^{2} c^{2} + 8 \,{\left (2 \, a^{2} c + a b\right )} d x^{2} + 8 \, a b c + b^{2} + 4 \,{\left (2 \, a d^{2} x^{4} +{\left (4 \, a c + b\right )} d x^{2} + 2 \, a c^{2} + b c\right )} \sqrt{a} \sqrt{\frac{a d x^{2} + a c + b}{d x^{2} + c}}\right ) + 4 \,{\left (2 \, a^{2} d^{2} x^{4} - 3 \, a b d x^{2} - 2 \, a^{2} c^{2} - 3 \, a b c\right )} \sqrt{\frac{a d x^{2} + a c + b}{d x^{2} + c}}}{32 \, a^{3} d^{2}}, -\frac{{\left (4 \, a b c + 3 \, b^{2}\right )} \sqrt{-a} \arctan \left (\frac{{\left (2 \, a d x^{2} + 2 \, a c + b\right )} \sqrt{-a} \sqrt{\frac{a d x^{2} + a c + b}{d x^{2} + c}}}{2 \,{\left (a^{2} d x^{2} + a^{2} c + a b\right )}}\right ) - 2 \,{\left (2 \, a^{2} d^{2} x^{4} - 3 \, a b d x^{2} - 2 \, a^{2} c^{2} - 3 \, a b c\right )} \sqrt{\frac{a d x^{2} + a c + b}{d x^{2} + c}}}{16 \, a^{3} d^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(a+b/(d*x^2+c))^(1/2),x, algorithm="fricas")

[Out]

[1/32*((4*a*b*c + 3*b^2)*sqrt(a)*log(8*a^2*d^2*x^4 + 8*a^2*c^2 + 8*(2*a^2*c + a*b)*d*x^2 + 8*a*b*c + b^2 + 4*(
2*a*d^2*x^4 + (4*a*c + b)*d*x^2 + 2*a*c^2 + b*c)*sqrt(a)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))) + 4*(2*a^2*d^2
*x^4 - 3*a*b*d*x^2 - 2*a^2*c^2 - 3*a*b*c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)))/(a^3*d^2), -1/16*((4*a*b*c +
3*b^2)*sqrt(-a)*arctan(1/2*(2*a*d*x^2 + 2*a*c + b)*sqrt(-a)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))/(a^2*d*x^2 +
 a^2*c + a*b)) - 2*(2*a^2*d^2*x^4 - 3*a*b*d*x^2 - 2*a^2*c^2 - 3*a*b*c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)))/
(a^3*d^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{3}}{\sqrt{\frac{a c + a d x^{2} + b}{c + d x^{2}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(a+b/(d*x**2+c))**(1/2),x)

[Out]

Integral(x**3/sqrt((a*c + a*d*x**2 + b)/(c + d*x**2)), x)

________________________________________________________________________________________

Giac [A]  time = 1.33666, size = 262, normalized size = 1.77 \begin{align*} \frac{1}{8} \, \sqrt{a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c}{\left (\frac{2 \, x^{2}}{a d \mathrm{sgn}\left (d x^{2} + c\right )} - \frac{2 \, a c d \mathrm{sgn}\left (d x^{2} + c\right ) + 3 \, b d \mathrm{sgn}\left (d x^{2} + c\right )}{a^{2} d^{3}}\right )} - \frac{{\left (4 \, a b c + 3 \, b^{2}\right )} \log \left ({\left | -2 \, a^{\frac{3}{2}} c d - 2 \,{\left (\sqrt{a d^{2}} x^{2} - \sqrt{a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c}\right )} a{\left | d \right |} - \sqrt{a} b d \right |}\right )}{16 \, a^{\frac{5}{2}} d{\left | d \right |} \mathrm{sgn}\left (d x^{2} + c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(a+b/(d*x^2+c))^(1/2),x, algorithm="giac")

[Out]

1/8*sqrt(a*d^2*x^4 + 2*a*c*d*x^2 + b*d*x^2 + a*c^2 + b*c)*(2*x^2/(a*d*sgn(d*x^2 + c)) - (2*a*c*d*sgn(d*x^2 + c
) + 3*b*d*sgn(d*x^2 + c))/(a^2*d^3)) - 1/16*(4*a*b*c + 3*b^2)*log(abs(-2*a^(3/2)*c*d - 2*(sqrt(a*d^2)*x^2 - sq
rt(a*d^2*x^4 + 2*a*c*d*x^2 + b*d*x^2 + a*c^2 + b*c))*a*abs(d) - sqrt(a)*b*d))/(a^(5/2)*d*abs(d)*sgn(d*x^2 + c)
)