3.310 \(\int \frac{1}{x (\frac{e (a+b x^2)}{c+d x^2})^{3/2}} \, dx\)

Optimal. Leaf size=152 \[ -\frac{c^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt{a} \sqrt{e}}\right )}{a^{3/2} e^{3/2}}+\frac{d^{3/2} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt{b} \sqrt{e}}\right )}{b^{3/2} e^{3/2}}+\frac{b c-a d}{a b e \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}} \]

[Out]

(b*c - a*d)/(a*b*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]) - (c^(3/2)*ArcTanh[(Sqrt[c]*Sqrt[(e*(a + b*x^2))/(c + d*
x^2)])/(Sqrt[a]*Sqrt[e])])/(a^(3/2)*e^(3/2)) + (d^(3/2)*ArcTanh[(Sqrt[d]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(S
qrt[b]*Sqrt[e])])/(b^(3/2)*e^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.196113, antiderivative size = 152, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154, Rules used = {1960, 480, 522, 208} \[ -\frac{c^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt{a} \sqrt{e}}\right )}{a^{3/2} e^{3/2}}+\frac{d^{3/2} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt{b} \sqrt{e}}\right )}{b^{3/2} e^{3/2}}+\frac{b c-a d}{a b e \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*((e*(a + b*x^2))/(c + d*x^2))^(3/2)),x]

[Out]

(b*c - a*d)/(a*b*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]) - (c^(3/2)*ArcTanh[(Sqrt[c]*Sqrt[(e*(a + b*x^2))/(c + d*
x^2)])/(Sqrt[a]*Sqrt[e])])/(a^(3/2)*e^(3/2)) + (d^(3/2)*ArcTanh[(Sqrt[d]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(S
qrt[b]*Sqrt[e])])/(b^(3/2)*e^(3/2))

Rule 1960

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> With[{q = Den
ominator[p]}, Dist[(q*e*(b*c - a*d))/n, Subst[Int[(x^(q*(p + 1) - 1)*(-(a*e) + c*x^q)^(Simplify[(m + 1)/n] - 1
))/(b*e - d*x^q)^(Simplify[(m + 1)/n] + 1), x], x, ((e*(a + b*x^n))/(c + d*x^n))^(1/q)], x]] /; FreeQ[{a, b, c
, d, e, m, n}, x] && FractionQ[p] && IntegerQ[Simplify[(m + 1)/n]]

Rule 480

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((e*x)^(m
 + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*c*e*(m + 1)), x] - Dist[1/(a*c*e^n*(m + 1)), Int[(e*x)^(m +
n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[(b*c + a*d)*(m + n + 1) + n*(b*c*p + a*d*q) + b*d*(m + n*(p + q + 2) + 1)*
x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntBino
mialQ[a, b, c, d, e, m, n, p, q, x]

Rule 522

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{x \left (\frac{e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx &=((b c-a d) e) \operatorname{Subst}\left (\int \frac{1}{x^2 \left (-a e+c x^2\right ) \left (b e-d x^2\right )} \, dx,x,\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}\right )\\ &=\frac{b c-a d}{a b e \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}-\frac{(b c-a d) \operatorname{Subst}\left (\int \frac{-(b c+a d) e+c d x^2}{\left (-a e+c x^2\right ) \left (b e-d x^2\right )} \, dx,x,\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}\right )}{a b e}\\ &=\frac{b c-a d}{a b e \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}+\frac{c^2 \operatorname{Subst}\left (\int \frac{1}{-a e+c x^2} \, dx,x,\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}\right )}{a e}+\frac{d^2 \operatorname{Subst}\left (\int \frac{1}{b e-d x^2} \, dx,x,\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}\right )}{b e}\\ &=\frac{b c-a d}{a b e \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}-\frac{c^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt{a} \sqrt{e}}\right )}{a^{3/2} e^{3/2}}+\frac{d^{3/2} \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt{b} \sqrt{e}}\right )}{b^{3/2} e^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.342338, size = 253, normalized size = 1.66 \[ \frac{-a^{3/2} d^{3/2} \sqrt{a+b x^2} \sqrt{c+d x^2} (a d-b c) \sqrt{\frac{b \left (c+d x^2\right )}{b c-a d}} \sinh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x^2}}{\sqrt{b c-a d}}\right )-b \left (c+d x^2\right ) \sqrt{b c-a d} \left (b c^{3/2} \sqrt{a+b x^2} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x^2}}{\sqrt{a} \sqrt{c+d x^2}}\right )+\sqrt{a} \sqrt{c+d x^2} (a d-b c)\right )}{a^{3/2} b^2 e \left (c+d x^2\right )^{3/2} \sqrt{b c-a d} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*((e*(a + b*x^2))/(c + d*x^2))^(3/2)),x]

[Out]

(-(a^(3/2)*d^(3/2)*(-(b*c) + a*d)*Sqrt[a + b*x^2]*Sqrt[c + d*x^2]*Sqrt[(b*(c + d*x^2))/(b*c - a*d)]*ArcSinh[(S
qrt[d]*Sqrt[a + b*x^2])/Sqrt[b*c - a*d]]) - b*Sqrt[b*c - a*d]*(c + d*x^2)*(Sqrt[a]*(-(b*c) + a*d)*Sqrt[c + d*x
^2] + b*c^(3/2)*Sqrt[a + b*x^2]*ArcTanh[(Sqrt[c]*Sqrt[a + b*x^2])/(Sqrt[a]*Sqrt[c + d*x^2])]))/(a^(3/2)*b^2*Sq
rt[b*c - a*d]*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2)^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.016, size = 401, normalized size = 2.6 \begin{align*}{\frac{b{x}^{2}+a}{2\,ab \left ( d{x}^{2}+c \right ) } \left ( \ln \left ({\frac{1}{2} \left ( 2\,bd{x}^{2}+2\,\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}\sqrt{bd}+ad+bc \right ){\frac{1}{\sqrt{bd}}}} \right ) \sqrt{ac}{x}^{2}ab{d}^{2}-\sqrt{bd}\ln \left ({\frac{1}{{x}^{2}} \left ( ad{x}^{2}+bc{x}^{2}+2\,\sqrt{ac}\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}+2\,ac \right ) } \right ){x}^{2}{b}^{2}{c}^{2}+\ln \left ({\frac{1}{2} \left ( 2\,bd{x}^{2}+2\,\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}\sqrt{bd}+ad+bc \right ){\frac{1}{\sqrt{bd}}}} \right ) \sqrt{ac}{a}^{2}{d}^{2}-\sqrt{bd}\ln \left ({\frac{1}{{x}^{2}} \left ( ad{x}^{2}+bc{x}^{2}+2\,\sqrt{ac}\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}+2\,ac \right ) } \right ) ab{c}^{2}-2\,\sqrt{bd}\sqrt{ac}\sqrt{ \left ( d{x}^{2}+c \right ) \left ( b{x}^{2}+a \right ) }ad+2\,\sqrt{bd}\sqrt{ac}\sqrt{ \left ( d{x}^{2}+c \right ) \left ( b{x}^{2}+a \right ) }bc \right ){\frac{1}{\sqrt{ac}}}{\frac{1}{\sqrt{bd}}}{\frac{1}{\sqrt{ \left ( d{x}^{2}+c \right ) \left ( b{x}^{2}+a \right ) }}} \left ({\frac{e \left ( b{x}^{2}+a \right ) }{d{x}^{2}+c}} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x)

[Out]

1/2*(ln(1/2*(2*b*d*x^2+2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*(a*c)^(1/2)*x^2
*a*b*d^2-(b*d)^(1/2)*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)+2*a*c)/x^2)*x^2*b^2
*c^2+ln(1/2*(2*b*d*x^2+2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*(a*c)^(1/2)*a^2
*d^2-(b*d)^(1/2)*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)+2*a*c)/x^2)*a*b*c^2-2*(
b*d)^(1/2)*(a*c)^(1/2)*((d*x^2+c)*(b*x^2+a))^(1/2)*a*d+2*(b*d)^(1/2)*(a*c)^(1/2)*((d*x^2+c)*(b*x^2+a))^(1/2)*b
*c)/a/b*(b*x^2+a)/(a*c)^(1/2)/(b*d)^(1/2)/((d*x^2+c)*(b*x^2+a))^(1/2)/(d*x^2+c)/(e*(b*x^2+a)/(d*x^2+c))^(3/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 8.17323, size = 2674, normalized size = 17.59 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="fricas")

[Out]

[1/4*((a*b*d*e*x^2 + a^2*d*e)*sqrt(d/(b*e))*log(8*b^2*d^2*x^4 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 8*(b^2*c*d + a
*b*d^2)*x^2 + 4*(2*b^2*d^2*x^4 + b^2*c^2 + a*b*c*d + (3*b^2*c*d + a*b*d^2)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 +
c))*sqrt(d/(b*e))) + (b^2*c*e*x^2 + a*b*c*e)*sqrt(c/(a*e))*log(((b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^4 + 8*a^2*c^
2 + 8*(a*b*c^2 + a^2*c*d)*x^2 - 4*((a*b*c*d + a^2*d^2)*x^4 + 2*a^2*c^2 + (a*b*c^2 + 3*a^2*c*d)*x^2)*sqrt((b*e*
x^2 + a*e)/(d*x^2 + c))*sqrt(c/(a*e)))/x^4) + 4*(b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2)*sqrt((b*e*x^2 + a*e)/(d*
x^2 + c)))/(a*b^2*e^2*x^2 + a^2*b*e^2), -1/4*(2*(a*b*d*e*x^2 + a^2*d*e)*sqrt(-d/(b*e))*arctan(1/2*(2*b*d*x^2 +
 b*c + a*d)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt(-d/(b*e))/(b*d*x^2 + a*d)) - (b^2*c*e*x^2 + a*b*c*e)*sqrt(c
/(a*e))*log(((b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^4 + 8*a^2*c^2 + 8*(a*b*c^2 + a^2*c*d)*x^2 - 4*((a*b*c*d + a^2*d
^2)*x^4 + 2*a^2*c^2 + (a*b*c^2 + 3*a^2*c*d)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt(c/(a*e)))/x^4) - 4*(b*
c^2 - a*c*d + (b*c*d - a*d^2)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c)))/(a*b^2*e^2*x^2 + a^2*b*e^2), 1/4*(2*(b^2
*c*e*x^2 + a*b*c*e)*sqrt(-c/(a*e))*arctan(1/2*((b*c + a*d)*x^2 + 2*a*c)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt
(-c/(a*e))/(b*c*x^2 + a*c)) + (a*b*d*e*x^2 + a^2*d*e)*sqrt(d/(b*e))*log(8*b^2*d^2*x^4 + b^2*c^2 + 6*a*b*c*d +
a^2*d^2 + 8*(b^2*c*d + a*b*d^2)*x^2 + 4*(2*b^2*d^2*x^4 + b^2*c^2 + a*b*c*d + (3*b^2*c*d + a*b*d^2)*x^2)*sqrt((
b*e*x^2 + a*e)/(d*x^2 + c))*sqrt(d/(b*e))) + 4*(b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x
^2 + c)))/(a*b^2*e^2*x^2 + a^2*b*e^2), 1/2*((b^2*c*e*x^2 + a*b*c*e)*sqrt(-c/(a*e))*arctan(1/2*((b*c + a*d)*x^2
 + 2*a*c)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt(-c/(a*e))/(b*c*x^2 + a*c)) - (a*b*d*e*x^2 + a^2*d*e)*sqrt(-d/
(b*e))*arctan(1/2*(2*b*d*x^2 + b*c + a*d)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt(-d/(b*e))/(b*d*x^2 + a*d)) +
2*(b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c)))/(a*b^2*e^2*x^2 + a^2*b*e^2)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*(b*x**2+a)/(d*x**2+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (\frac{{\left (b x^{2} + a\right )} e}{d x^{2} + c}\right )^{\frac{3}{2}} x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="giac")

[Out]

integrate(1/(((b*x^2 + a)*e/(d*x^2 + c))^(3/2)*x), x)