3.281 \(\int \frac{(\frac{e (a+b x^2)}{c+d x^2})^{3/2}}{x^5} \, dx\)

Optimal. Leaf size=256 \[ -\frac{a e^3 (b c-a d)^2 \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{4 c^3 \left (a e-\frac{c e \left (a+b x^2\right )}{c+d x^2}\right )^2}+\frac{e^2 (5 b c-9 a d) (b c-a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{8 c^3 \left (a e-\frac{c e \left (a+b x^2\right )}{c+d x^2}\right )}-\frac{3 e^{3/2} (b c-5 a d) (b c-a d) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt{a} \sqrt{e}}\right )}{8 \sqrt{a} c^{7/2}}-\frac{d e (b c-a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{c^3} \]

[Out]

-((d*(b*c - a*d)*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/c^3) - (a*(b*c - a*d)^2*e^3*Sqrt[(e*(a + b*x^2))/(c + d*
x^2)])/(4*c^3*(a*e - (c*e*(a + b*x^2))/(c + d*x^2))^2) + ((5*b*c - 9*a*d)*(b*c - a*d)*e^2*Sqrt[(e*(a + b*x^2))
/(c + d*x^2)])/(8*c^3*(a*e - (c*e*(a + b*x^2))/(c + d*x^2))) - (3*(b*c - 5*a*d)*(b*c - a*d)*e^(3/2)*ArcTanh[(S
qrt[c]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(Sqrt[a]*Sqrt[e])])/(8*Sqrt[a]*c^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.217923, antiderivative size = 256, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.192, Rules used = {1960, 455, 1157, 388, 208} \[ -\frac{a e^3 (b c-a d)^2 \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{4 c^3 \left (a e-\frac{c e \left (a+b x^2\right )}{c+d x^2}\right )^2}+\frac{e^2 (5 b c-9 a d) (b c-a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{8 c^3 \left (a e-\frac{c e \left (a+b x^2\right )}{c+d x^2}\right )}-\frac{3 e^{3/2} (b c-5 a d) (b c-a d) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt{a} \sqrt{e}}\right )}{8 \sqrt{a} c^{7/2}}-\frac{d e (b c-a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{c^3} \]

Antiderivative was successfully verified.

[In]

Int[((e*(a + b*x^2))/(c + d*x^2))^(3/2)/x^5,x]

[Out]

-((d*(b*c - a*d)*e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/c^3) - (a*(b*c - a*d)^2*e^3*Sqrt[(e*(a + b*x^2))/(c + d*
x^2)])/(4*c^3*(a*e - (c*e*(a + b*x^2))/(c + d*x^2))^2) + ((5*b*c - 9*a*d)*(b*c - a*d)*e^2*Sqrt[(e*(a + b*x^2))
/(c + d*x^2)])/(8*c^3*(a*e - (c*e*(a + b*x^2))/(c + d*x^2))) - (3*(b*c - 5*a*d)*(b*c - a*d)*e^(3/2)*ArcTanh[(S
qrt[c]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(Sqrt[a]*Sqrt[e])])/(8*Sqrt[a]*c^(7/2))

Rule 1960

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> With[{q = Den
ominator[p]}, Dist[(q*e*(b*c - a*d))/n, Subst[Int[(x^(q*(p + 1) - 1)*(-(a*e) + c*x^q)^(Simplify[(m + 1)/n] - 1
))/(b*e - d*x^q)^(Simplify[(m + 1)/n] + 1), x], x, ((e*(a + b*x^n))/(c + d*x^n))^(1/q)], x]] /; FreeQ[{a, b, c
, d, e, m, n}, x] && FractionQ[p] && IntegerQ[Simplify[(m + 1)/n]]

Rule 455

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[((-a)^(m/2 - 1)*(b*c - a*d)*
x*(a + b*x^2)^(p + 1))/(2*b^(m/2 + 1)*(p + 1)), x] + Dist[1/(2*b^(m/2 + 1)*(p + 1)), Int[(a + b*x^2)^(p + 1)*E
xpandToSum[2*b*(p + 1)*x^2*Together[(b^(m/2)*x^(m - 2)*(c + d*x^2) - (-a)^(m/2 - 1)*(b*c - a*d))/(a + b*x^2)]
- (-a)^(m/2 - 1)*(b*c - a*d), x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && IGtQ[
m/2, 0] && (IntegerQ[p] || EqQ[m + 2*p + 1, 0])

Rule 1157

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> With[{Qx = PolynomialQ
uotient[(a + b*x^2 + c*x^4)^p, d + e*x^2, x], R = Coeff[PolynomialRemainder[(a + b*x^2 + c*x^4)^p, d + e*x^2,
x], x, 0]}, -Simp[(R*x*(d + e*x^2)^(q + 1))/(2*d*(q + 1)), x] + Dist[1/(2*d*(q + 1)), Int[(d + e*x^2)^(q + 1)*
ExpandToSum[2*d*(q + 1)*Qx + R*(2*q + 3), x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && N
eQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[p, 0] && LtQ[q, -1]

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\left (\frac{e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}}{x^5} \, dx &=((b c-a d) e) \operatorname{Subst}\left (\int \frac{x^4 \left (b e-d x^2\right )}{\left (-a e+c x^2\right )^3} \, dx,x,\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}\right )\\ &=-\frac{a (b c-a d)^2 e^3 \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{4 c^3 \left (a e-\frac{c e \left (a+b x^2\right )}{c+d x^2}\right )^2}-\frac{((b c-a d) e) \operatorname{Subst}\left (\int \frac{-a (b c-a d) e^2-4 c (b c-a d) e x^2+4 c^2 d x^4}{\left (-a e+c x^2\right )^2} \, dx,x,\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}\right )}{4 c^3}\\ &=-\frac{a (b c-a d)^2 e^3 \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{4 c^3 \left (a e-\frac{c e \left (a+b x^2\right )}{c+d x^2}\right )^2}+\frac{(5 b c-9 a d) (b c-a d) e^2 \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{8 c^3 \left (a e-\frac{c e \left (a+b x^2\right )}{c+d x^2}\right )}-\frac{(b c-a d) \operatorname{Subst}\left (\int \frac{-a (3 b c-7 a d) e^2+8 a c d e x^2}{-a e+c x^2} \, dx,x,\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}\right )}{8 a c^3}\\ &=-\frac{d (b c-a d) e \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{c^3}-\frac{a (b c-a d)^2 e^3 \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{4 c^3 \left (a e-\frac{c e \left (a+b x^2\right )}{c+d x^2}\right )^2}+\frac{(5 b c-9 a d) (b c-a d) e^2 \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{8 c^3 \left (a e-\frac{c e \left (a+b x^2\right )}{c+d x^2}\right )}+\frac{\left (3 (b c-5 a d) (b c-a d) e^2\right ) \operatorname{Subst}\left (\int \frac{1}{-a e+c x^2} \, dx,x,\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}\right )}{8 c^3}\\ &=-\frac{d (b c-a d) e \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{c^3}-\frac{a (b c-a d)^2 e^3 \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{4 c^3 \left (a e-\frac{c e \left (a+b x^2\right )}{c+d x^2}\right )^2}+\frac{(5 b c-9 a d) (b c-a d) e^2 \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{8 c^3 \left (a e-\frac{c e \left (a+b x^2\right )}{c+d x^2}\right )}-\frac{3 (b c-5 a d) (b c-a d) e^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{\sqrt{a} \sqrt{e}}\right )}{8 \sqrt{a} c^{7/2}}\\ \end{align*}

Mathematica [A]  time = 0.124734, size = 186, normalized size = 0.73 \[ -\frac{e \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (3 x^4 \sqrt{c+d x^2} \left (5 a^2 d^2-6 a b c d+b^2 c^2\right ) \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x^2}}{\sqrt{a} \sqrt{c+d x^2}}\right )+\sqrt{a} \sqrt{c} \sqrt{a+b x^2} \left (a \left (2 c^2-5 c d x^2-15 d^2 x^4\right )+b c x^2 \left (5 c+13 d x^2\right )\right )\right )}{8 \sqrt{a} c^{7/2} x^4 \sqrt{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((e*(a + b*x^2))/(c + d*x^2))^(3/2)/x^5,x]

[Out]

-(e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(Sqrt[a]*Sqrt[c]*Sqrt[a + b*x^2]*(b*c*x^2*(5*c + 13*d*x^2) + a*(2*c^2 -
5*c*d*x^2 - 15*d^2*x^4)) + 3*(b^2*c^2 - 6*a*b*c*d + 5*a^2*d^2)*x^4*Sqrt[c + d*x^2]*ArcTanh[(Sqrt[c]*Sqrt[a + b
*x^2])/(Sqrt[a]*Sqrt[c + d*x^2])]))/(8*Sqrt[a]*c^(7/2)*x^4*Sqrt[a + b*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.016, size = 1042, normalized size = 4.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*(b*x^2+a)/(d*x^2+c))^(3/2)/x^5,x)

[Out]

1/16*(-18*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(a*c)^(1/2)*x^8*a*b*d^3+6*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(a
*c)^(1/2)*x^8*b^2*c*d^2-15*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)+2*a*c)/x^2)*x
^6*a^3*c*d^3+18*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)+2*a*c)/x^2)*x^6*a^2*b*c^
2*d^2-3*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)+2*a*c)/x^2)*x^6*a*b^2*c^3*d-18*(
b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(a*c)^(1/2)*x^6*a^2*d^3-26*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(a*c)^(1/2)*
x^6*a*b*c*d^2+12*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(a*c)^(1/2)*x^6*b^2*c^2*d-15*ln((a*d*x^2+b*c*x^2+2*(a*c)^
(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)+2*a*c)/x^2)*x^4*a^3*c^2*d^2+18*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*
d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)+2*a*c)/x^2)*x^4*a^2*b*c^3*d-3*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^4+a*d*
x^2+b*c*x^2+a*c)^(1/2)+2*a*c)/x^2)*x^4*a*b^2*c^4+18*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(3/2)*(a*c)^(1/2)*x^4*a*d^2-
6*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(3/2)*(a*c)^(1/2)*x^4*b*c*d-18*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(a*c)^(1/2)
*x^4*a^2*c*d^2-8*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(a*c)^(1/2)*x^4*a*b*c^2*d+6*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)
^(1/2)*(a*c)^(1/2)*x^4*b^2*c^3+16*(a*c)^(1/2)*((d*x^2+c)*(b*x^2+a))^(1/2)*x^4*a^2*c*d^2-16*(a*c)^(1/2)*((d*x^2
+c)*(b*x^2+a))^(1/2)*x^4*a*b*c^2*d+14*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(3/2)*(a*c)^(1/2)*x^2*a*c*d-6*(b*d*x^4+a*d
*x^2+b*c*x^2+a*c)^(3/2)*(a*c)^(1/2)*x^2*b*c^2-4*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(3/2)*(a*c)^(1/2)*a*c^2)/a*(d*x^
2+c)*(e*(b*x^2+a)/(d*x^2+c))^(3/2)/x^4/(a*c)^(1/2)/c^4/(b*x^2+a)/((d*x^2+c)*(b*x^2+a))^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(3/2)/x^5,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 19.6949, size = 925, normalized size = 3.61 \begin{align*} \left [\frac{3 \,{\left (b^{2} c^{2} - 6 \, a b c d + 5 \, a^{2} d^{2}\right )} e x^{4} \sqrt{\frac{e}{a c}} \log \left (\frac{{\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} e x^{4} + 8 \, a^{2} c^{2} e + 8 \,{\left (a b c^{2} + a^{2} c d\right )} e x^{2} - 4 \,{\left (2 \, a^{2} c^{3} +{\left (a b c^{2} d + a^{2} c d^{2}\right )} x^{4} +{\left (a b c^{3} + 3 \, a^{2} c^{2} d\right )} x^{2}\right )} \sqrt{\frac{b e x^{2} + a e}{d x^{2} + c}} \sqrt{\frac{e}{a c}}}{x^{4}}\right ) - 4 \,{\left ({\left (13 \, b c d - 15 \, a d^{2}\right )} e x^{4} + 2 \, a c^{2} e + 5 \,{\left (b c^{2} - a c d\right )} e x^{2}\right )} \sqrt{\frac{b e x^{2} + a e}{d x^{2} + c}}}{32 \, c^{3} x^{4}}, \frac{3 \,{\left (b^{2} c^{2} - 6 \, a b c d + 5 \, a^{2} d^{2}\right )} e x^{4} \sqrt{-\frac{e}{a c}} \arctan \left (\frac{{\left ({\left (b c + a d\right )} x^{2} + 2 \, a c\right )} \sqrt{\frac{b e x^{2} + a e}{d x^{2} + c}} \sqrt{-\frac{e}{a c}}}{2 \,{\left (b e x^{2} + a e\right )}}\right ) - 2 \,{\left ({\left (13 \, b c d - 15 \, a d^{2}\right )} e x^{4} + 2 \, a c^{2} e + 5 \,{\left (b c^{2} - a c d\right )} e x^{2}\right )} \sqrt{\frac{b e x^{2} + a e}{d x^{2} + c}}}{16 \, c^{3} x^{4}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(3/2)/x^5,x, algorithm="fricas")

[Out]

[1/32*(3*(b^2*c^2 - 6*a*b*c*d + 5*a^2*d^2)*e*x^4*sqrt(e/(a*c))*log(((b^2*c^2 + 6*a*b*c*d + a^2*d^2)*e*x^4 + 8*
a^2*c^2*e + 8*(a*b*c^2 + a^2*c*d)*e*x^2 - 4*(2*a^2*c^3 + (a*b*c^2*d + a^2*c*d^2)*x^4 + (a*b*c^3 + 3*a^2*c^2*d)
*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt(e/(a*c)))/x^4) - 4*((13*b*c*d - 15*a*d^2)*e*x^4 + 2*a*c^2*e + 5*(
b*c^2 - a*c*d)*e*x^2)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c)))/(c^3*x^4), 1/16*(3*(b^2*c^2 - 6*a*b*c*d + 5*a^2*d^2)*
e*x^4*sqrt(-e/(a*c))*arctan(1/2*((b*c + a*d)*x^2 + 2*a*c)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c))*sqrt(-e/(a*c))/(b*
e*x^2 + a*e)) - 2*((13*b*c*d - 15*a*d^2)*e*x^4 + 2*a*c^2*e + 5*(b*c^2 - a*c*d)*e*x^2)*sqrt((b*e*x^2 + a*e)/(d*
x^2 + c)))/(c^3*x^4)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x**2+a)/(d*x**2+c))**(3/2)/x**5,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (\frac{{\left (b x^{2} + a\right )} e}{d x^{2} + c}\right )^{\frac{3}{2}}}{x^{5}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(3/2)/x^5,x, algorithm="giac")

[Out]

integrate(((b*x^2 + a)*e/(d*x^2 + c))^(3/2)/x^5, x)