3.275 \(\int \frac{\sqrt{\frac{e (a+b x^2)}{c+d x^2}}}{x^6} \, dx\)

Optimal. Leaf size=424 \[ -\frac{d x \left (-8 a^2 d^2+3 a b c d+2 b^2 c^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{15 a^2 c^3}+\frac{\left (c+d x^2\right ) \left (-8 a^2 d^2+3 a b c d+2 b^2 c^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{15 a^2 c^3 x}+\frac{\sqrt{d} \left (-8 a^2 d^2+3 a b c d+2 b^2 c^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{15 a^2 c^{5/2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac{b \sqrt{d} (b c-4 a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{15 a^2 c^{3/2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac{\left (c+d x^2\right ) (b c-4 a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{15 a c^2 x^3}-\frac{\left (c+d x^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{5 c x^5} \]

[Out]

-(d*(2*b^2*c^2 + 3*a*b*c*d - 8*a^2*d^2)*x*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(15*a^2*c^3) - (Sqrt[(e*(a + b*x^
2))/(c + d*x^2)]*(c + d*x^2))/(5*c*x^5) - ((b*c - 4*a*d)*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2))/(15*a*
c^2*x^3) + ((2*b^2*c^2 + 3*a*b*c*d - 8*a^2*d^2)*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2))/(15*a^2*c^3*x)
+ (Sqrt[d]*(2*b^2*c^2 + 3*a*b*c*d - 8*a^2*d^2)*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*EllipticE[ArcTan[(Sqrt[d]*x)/
Sqrt[c]], 1 - (b*c)/(a*d)])/(15*a^2*c^(5/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]) - (b*Sqrt[d]*(b*c - 4*a*d)*
Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(15*a^2*c^(3/2)*Sqr
t[(c*(a + b*x^2))/(a*(c + d*x^2))])

________________________________________________________________________________________

Rubi [A]  time = 0.63358, antiderivative size = 424, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.269, Rules used = {6719, 475, 583, 531, 418, 492, 411} \[ -\frac{d x \left (-8 a^2 d^2+3 a b c d+2 b^2 c^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{15 a^2 c^3}+\frac{\left (c+d x^2\right ) \left (-8 a^2 d^2+3 a b c d+2 b^2 c^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{15 a^2 c^3 x}+\frac{\sqrt{d} \left (-8 a^2 d^2+3 a b c d+2 b^2 c^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{15 a^2 c^{5/2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac{b \sqrt{d} (b c-4 a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{15 a^2 c^{3/2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac{\left (c+d x^2\right ) (b c-4 a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{15 a c^2 x^3}-\frac{\left (c+d x^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{5 c x^5} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[(e*(a + b*x^2))/(c + d*x^2)]/x^6,x]

[Out]

-(d*(2*b^2*c^2 + 3*a*b*c*d - 8*a^2*d^2)*x*Sqrt[(e*(a + b*x^2))/(c + d*x^2)])/(15*a^2*c^3) - (Sqrt[(e*(a + b*x^
2))/(c + d*x^2)]*(c + d*x^2))/(5*c*x^5) - ((b*c - 4*a*d)*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2))/(15*a*
c^2*x^3) + ((2*b^2*c^2 + 3*a*b*c*d - 8*a^2*d^2)*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(c + d*x^2))/(15*a^2*c^3*x)
+ (Sqrt[d]*(2*b^2*c^2 + 3*a*b*c*d - 8*a^2*d^2)*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*EllipticE[ArcTan[(Sqrt[d]*x)/
Sqrt[c]], 1 - (b*c)/(a*d)])/(15*a^2*c^(5/2)*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]) - (b*Sqrt[d]*(b*c - 4*a*d)*
Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(15*a^2*c^(3/2)*Sqr
t[(c*(a + b*x^2))/(a*(c + d*x^2))])

Rule 6719

Int[(u_.)*((a_.)*(v_)^(m_.)*(w_)^(n_.))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a*v^m*w^n)^FracPart[p])/(v^(m*F
racPart[p])*w^(n*FracPart[p])), Int[u*v^(m*p)*w^(n*p), x], x] /; FreeQ[{a, m, n, p}, x] &&  !IntegerQ[p] &&  !
FreeQ[v, x] &&  !FreeQ[w, x]

Rule 475

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((e*x)^(m
 + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(a*e*(m + 1)), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*
x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*b*(m + 1) + n*(b*c*(p + 1) + a*d*q) + d*(b*(m + 1) + b*n*(p + q + 1))*x^n, x
], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[0, q, 1] && LtQ[m, -1] &&
IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 583

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[(e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*c*g*(m + 1)), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rule 531

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin{align*} \int \frac{\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{x^6} \, dx &=\frac{\left (\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \sqrt{c+d x^2}\right ) \int \frac{\sqrt{a+b x^2}}{x^6 \sqrt{c+d x^2}} \, dx}{\sqrt{a+b x^2}}\\ &=-\frac{\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{5 c x^5}+\frac{\left (\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \sqrt{c+d x^2}\right ) \int \frac{b c-4 a d-3 b d x^2}{x^4 \sqrt{a+b x^2} \sqrt{c+d x^2}} \, dx}{5 c \sqrt{a+b x^2}}\\ &=-\frac{\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{5 c x^5}-\frac{(b c-4 a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{15 a c^2 x^3}-\frac{\left (\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \sqrt{c+d x^2}\right ) \int \frac{2 b^2 c^2+3 a b c d-8 a^2 d^2+b d (b c-4 a d) x^2}{x^2 \sqrt{a+b x^2} \sqrt{c+d x^2}} \, dx}{15 a c^2 \sqrt{a+b x^2}}\\ &=-\frac{\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{5 c x^5}-\frac{(b c-4 a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{15 a c^2 x^3}+\frac{\left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{15 a^2 c^3 x}+\frac{\left (\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \sqrt{c+d x^2}\right ) \int \frac{-a b c d (b c-4 a d)-b d \left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) x^2}{\sqrt{a+b x^2} \sqrt{c+d x^2}} \, dx}{15 a^2 c^3 \sqrt{a+b x^2}}\\ &=-\frac{\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{5 c x^5}-\frac{(b c-4 a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{15 a c^2 x^3}+\frac{\left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{15 a^2 c^3 x}-\frac{\left (b d (b c-4 a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \sqrt{c+d x^2}\right ) \int \frac{1}{\sqrt{a+b x^2} \sqrt{c+d x^2}} \, dx}{15 a c^2 \sqrt{a+b x^2}}-\frac{\left (b d \left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \sqrt{c+d x^2}\right ) \int \frac{x^2}{\sqrt{a+b x^2} \sqrt{c+d x^2}} \, dx}{15 a^2 c^3 \sqrt{a+b x^2}}\\ &=-\frac{d \left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) x \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{15 a^2 c^3}-\frac{\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{5 c x^5}-\frac{(b c-4 a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{15 a c^2 x^3}+\frac{\left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{15 a^2 c^3 x}-\frac{b \sqrt{d} (b c-4 a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{15 a^2 c^{3/2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac{\left (d \left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \sqrt{c+d x^2}\right ) \int \frac{\sqrt{a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{15 a^2 c^2 \sqrt{a+b x^2}}\\ &=-\frac{d \left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) x \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}}{15 a^2 c^3}-\frac{\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{5 c x^5}-\frac{(b c-4 a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{15 a c^2 x^3}+\frac{\left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}{15 a^2 c^3 x}+\frac{\sqrt{d} \left (2 b^2 c^2+3 a b c d-8 a^2 d^2\right ) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{15 a^2 c^{5/2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac{b \sqrt{d} (b c-4 a d) \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{15 a^2 c^{3/2} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\\ \end{align*}

Mathematica [C]  time = 0.568318, size = 302, normalized size = 0.71 \[ -\frac{\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \left (\sqrt{\frac{b}{a}} \left (a+b x^2\right ) \left (c+d x^2\right ) \left (a^2 \left (3 c^2-4 c d x^2+8 d^2 x^4\right )+a b c x^2 \left (c-3 d x^2\right )-2 b^2 c^2 x^4\right )-2 i b c x^5 \sqrt{\frac{b x^2}{a}+1} \sqrt{\frac{d x^2}{c}+1} \left (2 a^2 d^2-a b c d-b^2 c^2\right ) F\left (i \sinh ^{-1}\left (\sqrt{\frac{b}{a}} x\right )|\frac{a d}{b c}\right )+i b c x^5 \sqrt{\frac{b x^2}{a}+1} \sqrt{\frac{d x^2}{c}+1} \left (8 a^2 d^2-3 a b c d-2 b^2 c^2\right ) E\left (i \sinh ^{-1}\left (\sqrt{\frac{b}{a}} x\right )|\frac{a d}{b c}\right )\right )}{15 a^2 c^3 x^5 \sqrt{\frac{b}{a}} \left (a+b x^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[(e*(a + b*x^2))/(c + d*x^2)]/x^6,x]

[Out]

-(Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(Sqrt[b/a]*(a + b*x^2)*(c + d*x^2)*(-2*b^2*c^2*x^4 + a*b*c*x^2*(c - 3*d*x^
2) + a^2*(3*c^2 - 4*c*d*x^2 + 8*d^2*x^4)) + I*b*c*(-2*b^2*c^2 - 3*a*b*c*d + 8*a^2*d^2)*x^5*Sqrt[1 + (b*x^2)/a]
*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] - (2*I)*b*c*(-(b^2*c^2) - a*b*c*d + 2*a^2*
d^2)*x^5*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)]))/(15*a^2*Sqrt
[b/a]*c^3*x^5*(a + b*x^2))

________________________________________________________________________________________

Maple [A]  time = 0.024, size = 708, normalized size = 1.7 \begin{align*} -{\frac{d{x}^{2}+c}{15\,{c}^{3}{x}^{5}{a}^{2}}\sqrt{{\frac{e \left ( b{x}^{2}+a \right ) }{d{x}^{2}+c}}} \left ( 8\,\sqrt{-{\frac{b}{a}}}{x}^{8}{a}^{2}b{d}^{3}-3\,\sqrt{-{\frac{b}{a}}}{x}^{8}a{b}^{2}c{d}^{2}-2\,\sqrt{-{\frac{b}{a}}}{x}^{8}{b}^{3}{c}^{2}d+4\,\sqrt{{\frac{b{x}^{2}+a}{a}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}{\it EllipticF} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ){x}^{5}{a}^{2}bc{d}^{2}-2\,\sqrt{{\frac{b{x}^{2}+a}{a}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}{\it EllipticF} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ){x}^{5}a{b}^{2}{c}^{2}d-2\,\sqrt{{\frac{b{x}^{2}+a}{a}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}{\it EllipticF} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ){x}^{5}{b}^{3}{c}^{3}-8\,\sqrt{{\frac{b{x}^{2}+a}{a}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}{\it EllipticE} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ){x}^{5}{a}^{2}bc{d}^{2}+3\,\sqrt{{\frac{b{x}^{2}+a}{a}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}{\it EllipticE} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ){x}^{5}a{b}^{2}{c}^{2}d+2\,\sqrt{{\frac{b{x}^{2}+a}{a}}}\sqrt{{\frac{d{x}^{2}+c}{c}}}{\it EllipticE} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ){x}^{5}{b}^{3}{c}^{3}+8\,\sqrt{-{\frac{b}{a}}}{x}^{6}{a}^{3}{d}^{3}+\sqrt{-{\frac{b}{a}}}{x}^{6}{a}^{2}bc{d}^{2}-4\,\sqrt{-{\frac{b}{a}}}{x}^{6}a{b}^{2}{c}^{2}d-2\,\sqrt{-{\frac{b}{a}}}{x}^{6}{b}^{3}{c}^{3}+4\,\sqrt{-{\frac{b}{a}}}{x}^{4}{a}^{3}c{d}^{2}-3\,\sqrt{-{\frac{b}{a}}}{x}^{4}{a}^{2}b{c}^{2}d-\sqrt{-{\frac{b}{a}}}{x}^{4}a{b}^{2}{c}^{3}-\sqrt{-{\frac{b}{a}}}{x}^{2}{a}^{3}{c}^{2}d+4\,\sqrt{-{\frac{b}{a}}}{x}^{2}{a}^{2}b{c}^{3}+3\,\sqrt{-{\frac{b}{a}}}{a}^{3}{c}^{3} \right ){\frac{1}{\sqrt{ \left ( d{x}^{2}+c \right ) \left ( b{x}^{2}+a \right ) }}}{\frac{1}{\sqrt{-{\frac{b}{a}}}}}{\frac{1}{\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*(b*x^2+a)/(d*x^2+c))^(1/2)/x^6,x)

[Out]

-1/15*(e*(b*x^2+a)/(d*x^2+c))^(1/2)*(d*x^2+c)*(8*(-b/a)^(1/2)*x^8*a^2*b*d^3-3*(-b/a)^(1/2)*x^8*a*b^2*c*d^2-2*(
-b/a)^(1/2)*x^8*b^3*c^2*d+4*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*
x^5*a^2*b*c*d^2-2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*x^5*a*b^2*
c^2*d-2*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*x^5*b^3*c^3-8*((b*x^
2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*x^5*a^2*b*c*d^2+3*((b*x^2+a)/a)^(1
/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*x^5*a*b^2*c^2*d+2*((b*x^2+a)/a)^(1/2)*((d*x^
2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*x^5*b^3*c^3+8*(-b/a)^(1/2)*x^6*a^3*d^3+(-b/a)^(1/2)*x^
6*a^2*b*c*d^2-4*(-b/a)^(1/2)*x^6*a*b^2*c^2*d-2*(-b/a)^(1/2)*x^6*b^3*c^3+4*(-b/a)^(1/2)*x^4*a^3*c*d^2-3*(-b/a)^
(1/2)*x^4*a^2*b*c^2*d-(-b/a)^(1/2)*x^4*a*b^2*c^3-(-b/a)^(1/2)*x^2*a^3*c^2*d+4*(-b/a)^(1/2)*x^2*a^2*b*c^3+3*(-b
/a)^(1/2)*a^3*c^3)/((d*x^2+c)*(b*x^2+a))^(1/2)/c^3/x^5/a^2/(-b/a)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\frac{{\left (b x^{2} + a\right )} e}{d x^{2} + c}}}{x^{6}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(1/2)/x^6,x, algorithm="maxima")

[Out]

integrate(sqrt((b*x^2 + a)*e/(d*x^2 + c))/x^6, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{\frac{b e x^{2} + a e}{d x^{2} + c}}}{x^{6}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(1/2)/x^6,x, algorithm="fricas")

[Out]

integral(sqrt((b*e*x^2 + a*e)/(d*x^2 + c))/x^6, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x**2+a)/(d*x**2+c))**(1/2)/x**6,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\frac{{\left (b x^{2} + a\right )} e}{d x^{2} + c}}}{x^{6}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(1/2)/x^6,x, algorithm="giac")

[Out]

integrate(sqrt((b*x^2 + a)*e/(d*x^2 + c))/x^6, x)