3.272 \(\int \sqrt{\frac{e (a+b x^2)}{c+d x^2}} \, dx\)

Optimal. Leaf size=194 \[ x \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}+\frac{\sqrt{c} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{\sqrt{d} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac{\sqrt{c} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{\sqrt{d} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}} \]

[Out]

x*Sqrt[(e*(a + b*x^2))/(c + d*x^2)] - (Sqrt[c]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*EllipticE[ArcTan[(Sqrt[d]*x)/
Sqrt[c]], 1 - (b*c)/(a*d)])/(Sqrt[d]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]) + (Sqrt[c]*Sqrt[(e*(a + b*x^2))/(c
 + d*x^2)]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(Sqrt[d]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^
2))])

________________________________________________________________________________________

Rubi [A]  time = 0.122526, antiderivative size = 194, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.227, Rules used = {6719, 422, 418, 492, 411} \[ x \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}+\frac{\sqrt{c} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{\sqrt{d} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac{\sqrt{c} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{\sqrt{d} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[(e*(a + b*x^2))/(c + d*x^2)],x]

[Out]

x*Sqrt[(e*(a + b*x^2))/(c + d*x^2)] - (Sqrt[c]*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*EllipticE[ArcTan[(Sqrt[d]*x)/
Sqrt[c]], 1 - (b*c)/(a*d)])/(Sqrt[d]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]) + (Sqrt[c]*Sqrt[(e*(a + b*x^2))/(c
 + d*x^2)]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(Sqrt[d]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^
2))])

Rule 6719

Int[(u_.)*((a_.)*(v_)^(m_.)*(w_)^(n_.))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a*v^m*w^n)^FracPart[p])/(v^(m*F
racPart[p])*w^(n*FracPart[p])), Int[u*v^(m*p)*w^(n*p), x], x] /; FreeQ[{a, m, n, p}, x] &&  !IntegerQ[p] &&  !
FreeQ[v, x] &&  !FreeQ[w, x]

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[a, Int[1/(Sqrt[a + b*x^2]*Sqrt[c +
d*x^2]), x], x] + Dist[b, Int[x^2/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && PosQ[
d/c] && PosQ[b/a]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin{align*} \int \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \, dx &=\frac{\left (\sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \sqrt{c+d x^2}\right ) \int \frac{\sqrt{a+b x^2}}{\sqrt{c+d x^2}} \, dx}{\sqrt{a+b x^2}}\\ &=\frac{\left (a \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \sqrt{c+d x^2}\right ) \int \frac{1}{\sqrt{a+b x^2} \sqrt{c+d x^2}} \, dx}{\sqrt{a+b x^2}}+\frac{\left (b \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \sqrt{c+d x^2}\right ) \int \frac{x^2}{\sqrt{a+b x^2} \sqrt{c+d x^2}} \, dx}{\sqrt{a+b x^2}}\\ &=x \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}+\frac{\sqrt{c} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{\sqrt{d} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-\frac{\left (c \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} \sqrt{c+d x^2}\right ) \int \frac{\sqrt{a+b x^2}}{\left (c+d x^2\right )^{3/2}} \, dx}{\sqrt{a+b x^2}}\\ &=x \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}}-\frac{\sqrt{c} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} E\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{\sqrt{d} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+\frac{\sqrt{c} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} F\left (\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{b c}{a d}\right )}{\sqrt{d} \sqrt{\frac{c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\\ \end{align*}

Mathematica [A]  time = 0.0554609, size = 86, normalized size = 0.44 \[ \frac{\sqrt{\frac{c+d x^2}{c}} \sqrt{\frac{e \left (a+b x^2\right )}{c+d x^2}} E\left (\sin ^{-1}\left (\sqrt{-\frac{d}{c}} x\right )|\frac{b c}{a d}\right )}{\sqrt{-\frac{d}{c}} \sqrt{\frac{a+b x^2}{a}}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[(e*(a + b*x^2))/(c + d*x^2)],x]

[Out]

(Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*Sqrt[(c + d*x^2)/c]*EllipticE[ArcSin[Sqrt[-(d/c)]*x], (b*c)/(a*d)])/(Sqrt[-
(d/c)]*Sqrt[(a + b*x^2)/a])

________________________________________________________________________________________

Maple [A]  time = 0.009, size = 184, normalized size = 1. \begin{align*}{\frac{d{x}^{2}+c}{d}\sqrt{{\frac{ \left ( b{x}^{2}+a \right ) e}{d{x}^{2}+c}}}\sqrt{{\frac{b{x}^{2}+a}{a}}}\sqrt{{\frac{d{x}^{2}+c}{c}}} \left ( a{\it EllipticF} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ) d-bc{\it EllipticF} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ) +bc{\it EllipticE} \left ( x\sqrt{-{\frac{b}{a}}},\sqrt{{\frac{ad}{bc}}} \right ) \right ){\frac{1}{\sqrt{ \left ( d{x}^{2}+c \right ) \left ( b{x}^{2}+a \right ) }}}{\frac{1}{\sqrt{-{\frac{b}{a}}}}}{\frac{1}{\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*(b*x^2+a)/(d*x^2+c))^(1/2),x)

[Out]

(e*(b*x^2+a)/(d*x^2+c))^(1/2)*(d*x^2+c)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*(a*EllipticF(x*(-b/a)^(1/2),(a
*d/b/c)^(1/2))*d-b*c*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))+b*c*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2)))/
((d*x^2+c)*(b*x^2+a))^(1/2)/(-b/a)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{\frac{{\left (b x^{2} + a\right )} e}{d x^{2} + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt((b*x^2 + a)*e/(d*x^2 + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{\frac{b e x^{2} + a e}{d x^{2} + c}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt((b*e*x^2 + a*e)/(d*x^2 + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x**2+a)/(d*x**2+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{\frac{{\left (b x^{2} + a\right )} e}{d x^{2} + c}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*(b*x^2+a)/(d*x^2+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt((b*x^2 + a)*e/(d*x^2 + c)), x)