3.222 \(\int \frac{1}{(a+c x^4)^{3/2}} \, dx\)

Optimal. Leaf size=108 \[ \frac{\left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{4 a^{5/4} \sqrt [4]{c} \sqrt{a+c x^4}}+\frac{x}{2 a \sqrt{a+c x^4}} \]

[Out]

x/(2*a*Sqrt[a + c*x^4]) + ((Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*Arc
Tan[(c^(1/4)*x)/a^(1/4)], 1/2])/(4*a^(5/4)*c^(1/4)*Sqrt[a + c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0190018, antiderivative size = 108, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {199, 220} \[ \frac{\left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{4 a^{5/4} \sqrt [4]{c} \sqrt{a+c x^4}}+\frac{x}{2 a \sqrt{a+c x^4}} \]

Antiderivative was successfully verified.

[In]

Int[(a + c*x^4)^(-3/2),x]

[Out]

x/(2*a*Sqrt[a + c*x^4]) + ((Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*Arc
Tan[(c^(1/4)*x)/a^(1/4)], 1/2])/(4*a^(5/4)*c^(1/4)*Sqrt[a + c*x^4])

Rule 199

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{1}{\left (a+c x^4\right )^{3/2}} \, dx &=\frac{x}{2 a \sqrt{a+c x^4}}+\frac{\int \frac{1}{\sqrt{a+c x^4}} \, dx}{2 a}\\ &=\frac{x}{2 a \sqrt{a+c x^4}}+\frac{\left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{4 a^{5/4} \sqrt [4]{c} \sqrt{a+c x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0106048, size = 55, normalized size = 0.51 \[ \frac{x \sqrt{\frac{c x^4}{a}+1} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-\frac{c x^4}{a}\right )+x}{2 a \sqrt{a+c x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + c*x^4)^(-3/2),x]

[Out]

(x + x*Sqrt[1 + (c*x^4)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((c*x^4)/a)])/(2*a*Sqrt[a + c*x^4])

________________________________________________________________________________________

Maple [C]  time = 0.002, size = 94, normalized size = 0.9 \begin{align*}{\frac{x}{2\,a}{\frac{1}{\sqrt{ \left ({x}^{4}+{\frac{a}{c}} \right ) c}}}}+{\frac{1}{2\,a}\sqrt{1-{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{c{x}^{4}+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*x^4+a)^(3/2),x)

[Out]

1/2*x/a/((x^4+a/c)*c)^(1/2)+1/2/a/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^(1/
2)*x^2)^(1/2)/(c*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{4} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^4+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((c*x^4 + a)^(-3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{4} + a}}{c^{2} x^{8} + 2 \, a c x^{4} + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^4+a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + a)/(c^2*x^8 + 2*a*c*x^4 + a^2), x)

________________________________________________________________________________________

Sympy [C]  time = 0.680081, size = 36, normalized size = 0.33 \begin{align*} \frac{x \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{3}{2} \\ \frac{5}{4} \end{matrix}\middle |{\frac{c x^{4} e^{i \pi }}{a}} \right )}}{4 a^{\frac{3}{2}} \Gamma \left (\frac{5}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x**4+a)**(3/2),x)

[Out]

x*gamma(1/4)*hyper((1/4, 3/2), (5/4,), c*x**4*exp_polar(I*pi)/a)/(4*a**(3/2)*gamma(5/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (c x^{4} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x^4+a)^(3/2),x, algorithm="giac")

[Out]

integrate((c*x^4 + a)^(-3/2), x)