3.220 \(\int \frac{(d+e x)^2}{(a+c x^4)^{3/2}} \, dx\)

Optimal. Leaf size=270 \[ \frac{\left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} \left (\sqrt{c} d^2-\sqrt{a} e^2\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{4 a^{5/4} c^{3/4} \sqrt{a+c x^4}}+\frac{e^2 \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 a^{3/4} c^{3/4} \sqrt{a+c x^4}}+\frac{x (d+e x)^2}{2 a \sqrt{a+c x^4}}-\frac{e^2 x \sqrt{a+c x^4}}{2 a \sqrt{c} \left (\sqrt{a}+\sqrt{c} x^2\right )} \]

[Out]

(x*(d + e*x)^2)/(2*a*Sqrt[a + c*x^4]) - (e^2*x*Sqrt[a + c*x^4])/(2*a*Sqrt[c]*(Sqrt[a] + Sqrt[c]*x^2)) + (e^2*(
Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/
2])/(2*a^(3/4)*c^(3/4)*Sqrt[a + c*x^4]) + ((Sqrt[c]*d^2 - Sqrt[a]*e^2)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4
)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(4*a^(5/4)*c^(3/4)*Sqrt[a + c*x^4]
)

________________________________________________________________________________________

Rubi [A]  time = 0.117386, antiderivative size = 270, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {1855, 1198, 220, 1196} \[ \frac{\left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} \left (\sqrt{c} d^2-\sqrt{a} e^2\right ) F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{4 a^{5/4} c^{3/4} \sqrt{a+c x^4}}+\frac{e^2 \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 a^{3/4} c^{3/4} \sqrt{a+c x^4}}+\frac{x (d+e x)^2}{2 a \sqrt{a+c x^4}}-\frac{e^2 x \sqrt{a+c x^4}}{2 a \sqrt{c} \left (\sqrt{a}+\sqrt{c} x^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^2/(a + c*x^4)^(3/2),x]

[Out]

(x*(d + e*x)^2)/(2*a*Sqrt[a + c*x^4]) - (e^2*x*Sqrt[a + c*x^4])/(2*a*Sqrt[c]*(Sqrt[a] + Sqrt[c]*x^2)) + (e^2*(
Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/
2])/(2*a^(3/4)*c^(3/4)*Sqrt[a + c*x^4]) + ((Sqrt[c]*d^2 - Sqrt[a]*e^2)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4
)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(4*a^(5/4)*c^(3/4)*Sqrt[a + c*x^4]
)

Rule 1855

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> -Simp[(x*Pq*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Di
st[1/(a*n*(p + 1)), Int[ExpandToSum[n*(p + 1)*Pq + D[x*Pq, x], x]*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b},
 x] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1] && LtQ[Expon[Pq, x], n - 1]

Rule 1198

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int \frac{(d+e x)^2}{\left (a+c x^4\right )^{3/2}} \, dx &=\frac{x (d+e x)^2}{2 a \sqrt{a+c x^4}}-\frac{\int \frac{-d^2+e^2 x^2}{\sqrt{a+c x^4}} \, dx}{2 a}\\ &=\frac{x (d+e x)^2}{2 a \sqrt{a+c x^4}}+\frac{e^2 \int \frac{1-\frac{\sqrt{c} x^2}{\sqrt{a}}}{\sqrt{a+c x^4}} \, dx}{2 \sqrt{a} \sqrt{c}}+\frac{\left (d^2-\frac{\sqrt{a} e^2}{\sqrt{c}}\right ) \int \frac{1}{\sqrt{a+c x^4}} \, dx}{2 a}\\ &=\frac{x (d+e x)^2}{2 a \sqrt{a+c x^4}}-\frac{e^2 x \sqrt{a+c x^4}}{2 a \sqrt{c} \left (\sqrt{a}+\sqrt{c} x^2\right )}+\frac{e^2 \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{2 a^{3/4} c^{3/4} \sqrt{a+c x^4}}+\frac{\left (d^2-\frac{\sqrt{a} e^2}{\sqrt{c}}\right ) \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{4 a^{5/4} \sqrt [4]{c} \sqrt{a+c x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0617646, size = 108, normalized size = 0.4 \[ \frac{x \left (3 d^2 \sqrt{\frac{c x^4}{a}+1} \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};-\frac{c x^4}{a}\right )+2 e^2 x^2 \sqrt{\frac{c x^4}{a}+1} \, _2F_1\left (\frac{3}{4},\frac{3}{2};\frac{7}{4};-\frac{c x^4}{a}\right )+3 d (d+2 e x)\right )}{6 a \sqrt{a+c x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^2/(a + c*x^4)^(3/2),x]

[Out]

(x*(3*d*(d + 2*e*x) + 3*d^2*Sqrt[1 + (c*x^4)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((c*x^4)/a)] + 2*e^2*x^2*Sqr
t[1 + (c*x^4)/a]*Hypergeometric2F1[3/4, 3/2, 7/4, -((c*x^4)/a)]))/(6*a*Sqrt[a + c*x^4])

________________________________________________________________________________________

Maple [C]  time = 0.006, size = 239, normalized size = 0.9 \begin{align*}{e}^{2} \left ({\frac{{x}^{3}}{2\,a}{\frac{1}{\sqrt{ \left ({x}^{4}+{\frac{a}{c}} \right ) c}}}}-{{\frac{i}{2}}\sqrt{1-{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}} \left ({\it EllipticF} \left ( x\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ) -{\it EllipticE} \left ( x\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ) \right ){\frac{1}{\sqrt{a}}}{\frac{1}{\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{c{x}^{4}+a}}}{\frac{1}{\sqrt{c}}}} \right ) +{\frac{de{x}^{2}}{a}{\frac{1}{\sqrt{c{x}^{4}+a}}}}+{d}^{2} \left ({\frac{x}{2\,a}{\frac{1}{\sqrt{ \left ({x}^{4}+{\frac{a}{c}} \right ) c}}}}+{\frac{1}{2\,a}\sqrt{1-{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{c{x}^{4}+a}}}} \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^2/(c*x^4+a)^(3/2),x)

[Out]

e^2*(1/2*x^3/a/((x^4+a/c)*c)^(1/2)-1/2*I/a^(1/2)/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+
I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)/c^(1/2)*(EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I)-EllipticE(x*(I/
a^(1/2)*c^(1/2))^(1/2),I)))+d*e/(c*x^4+a)^(1/2)/a*x^2+d^2*(1/2*x/a/((x^4+a/c)*c)^(1/2)+1/2/a/(I/a^(1/2)*c^(1/2
))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2
)*c^(1/2))^(1/2),I))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{2}}{{\left (c x^{4} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(c*x^4+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^2/(c*x^4 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{4} + a}{\left (e^{2} x^{2} + 2 \, d e x + d^{2}\right )}}{c^{2} x^{8} + 2 \, a c x^{4} + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(c*x^4+a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + a)*(e^2*x^2 + 2*d*e*x + d^2)/(c^2*x^8 + 2*a*c*x^4 + a^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d + e x\right )^{2}}{\left (a + c x^{4}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**2/(c*x**4+a)**(3/2),x)

[Out]

Integral((d + e*x)**2/(a + c*x**4)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{2}}{{\left (c x^{4} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(c*x^4+a)^(3/2),x, algorithm="giac")

[Out]

integrate((e*x + d)^2/(c*x^4 + a)^(3/2), x)