3.209 \(\int \sqrt{a+c x^4} \, dx\)

Optimal. Leaf size=105 \[ \frac{a^{3/4} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{3 \sqrt [4]{c} \sqrt{a+c x^4}}+\frac{1}{3} x \sqrt{a+c x^4} \]

[Out]

(x*Sqrt[a + c*x^4])/3 + (a^(3/4)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF
[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(3*c^(1/4)*Sqrt[a + c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0194917, antiderivative size = 105, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {195, 220} \[ \frac{a^{3/4} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{3 \sqrt [4]{c} \sqrt{a+c x^4}}+\frac{1}{3} x \sqrt{a+c x^4} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + c*x^4],x]

[Out]

(x*Sqrt[a + c*x^4])/3 + (a^(3/4)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF
[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(3*c^(1/4)*Sqrt[a + c*x^4])

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \sqrt{a+c x^4} \, dx &=\frac{1}{3} x \sqrt{a+c x^4}+\frac{1}{3} (2 a) \int \frac{1}{\sqrt{a+c x^4}} \, dx\\ &=\frac{1}{3} x \sqrt{a+c x^4}+\frac{a^{3/4} \left (\sqrt{a}+\sqrt{c} x^2\right ) \sqrt{\frac{a+c x^4}{\left (\sqrt{a}+\sqrt{c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac{1}{2}\right )}{3 \sqrt [4]{c} \sqrt{a+c x^4}}\\ \end{align*}

Mathematica [C]  time = 0.105744, size = 89, normalized size = 0.85 \[ \frac{x \left (a+c x^4\right )-\frac{2 i a \sqrt{\frac{c x^4}{a}+1} F\left (\left .i \sinh ^{-1}\left (\sqrt{\frac{i \sqrt{c}}{\sqrt{a}}} x\right )\right |-1\right )}{\sqrt{\frac{i \sqrt{c}}{\sqrt{a}}}}}{3 \sqrt{a+c x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + c*x^4],x]

[Out]

(x*(a + c*x^4) - ((2*I)*a*Sqrt[1 + (c*x^4)/a]*EllipticF[I*ArcSinh[Sqrt[(I*Sqrt[c])/Sqrt[a]]*x], -1])/Sqrt[(I*S
qrt[c])/Sqrt[a]])/(3*Sqrt[a + c*x^4])

________________________________________________________________________________________

Maple [C]  time = 0.001, size = 85, normalized size = 0.8 \begin{align*}{\frac{x}{3}\sqrt{c{x}^{4}+a}}+{\frac{2\,a}{3}\sqrt{1-{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{i{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{i\sqrt{c}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{c{x}^{4}+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^4+a)^(1/2),x)

[Out]

1/3*x*(c*x^4+a)^(1/2)+2/3*a/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^(1/2)*x^2
)^(1/2)/(c*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c x^{4} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^4 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{c x^{4} + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + a), x)

________________________________________________________________________________________

Sympy [C]  time = 0.657534, size = 37, normalized size = 0.35 \begin{align*} \frac{\sqrt{a} x \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{1}{4} \\ \frac{5}{4} \end{matrix}\middle |{\frac{c x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac{5}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**4+a)**(1/2),x)

[Out]

sqrt(a)*x*gamma(1/4)*hyper((-1/2, 1/4), (5/4,), c*x**4*exp_polar(I*pi)/a)/(4*gamma(5/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{c x^{4} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^4 + a), x)