3.191 \(\int \frac{(e+f x)^n}{a+b x^3} \, dx\)

Optimal. Leaf size=263 \[ -\frac{(e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{\sqrt [3]{b} (e+f x)}{\sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 a^{2/3} (n+1) \left (\sqrt [3]{b} e-\sqrt [3]{a} f\right )}-\frac{(e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{(-1)^{2/3} \sqrt [3]{b} (e+f x)}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 a^{2/3} (n+1) \left ((-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f\right )}+\frac{(e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{\sqrt [3]{-1} \sqrt [3]{b} (e+f x)}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}\right )}{3 a^{2/3} (n+1) \left (\sqrt [3]{a} f+\sqrt [3]{-1} \sqrt [3]{b} e\right )} \]

[Out]

-((e + f*x)^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, (b^(1/3)*(e + f*x))/(b^(1/3)*e - a^(1/3)*f)])/(3*a^(2/3
)*(b^(1/3)*e - a^(1/3)*f)*(1 + n)) - ((e + f*x)^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, ((-1)^(2/3)*b^(1/3)
*(e + f*x))/((-1)^(2/3)*b^(1/3)*e - a^(1/3)*f)])/(3*a^(2/3)*((-1)^(2/3)*b^(1/3)*e - a^(1/3)*f)*(1 + n)) + ((e
+ f*x)^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, ((-1)^(1/3)*b^(1/3)*(e + f*x))/((-1)^(1/3)*b^(1/3)*e + a^(1/
3)*f)])/(3*a^(2/3)*((-1)^(1/3)*b^(1/3)*e + a^(1/3)*f)*(1 + n))

________________________________________________________________________________________

Rubi [A]  time = 0.158192, antiderivative size = 263, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 2, integrand size = 17, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.118, Rules used = {6725, 68} \[ -\frac{(e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{\sqrt [3]{b} (e+f x)}{\sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 a^{2/3} (n+1) \left (\sqrt [3]{b} e-\sqrt [3]{a} f\right )}-\frac{(e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{(-1)^{2/3} \sqrt [3]{b} (e+f x)}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 a^{2/3} (n+1) \left ((-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f\right )}+\frac{(e+f x)^{n+1} \, _2F_1\left (1,n+1;n+2;\frac{\sqrt [3]{-1} \sqrt [3]{b} (e+f x)}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}\right )}{3 a^{2/3} (n+1) \left (\sqrt [3]{a} f+\sqrt [3]{-1} \sqrt [3]{b} e\right )} \]

Antiderivative was successfully verified.

[In]

Int[(e + f*x)^n/(a + b*x^3),x]

[Out]

-((e + f*x)^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, (b^(1/3)*(e + f*x))/(b^(1/3)*e - a^(1/3)*f)])/(3*a^(2/3
)*(b^(1/3)*e - a^(1/3)*f)*(1 + n)) - ((e + f*x)^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, ((-1)^(2/3)*b^(1/3)
*(e + f*x))/((-1)^(2/3)*b^(1/3)*e - a^(1/3)*f)])/(3*a^(2/3)*((-1)^(2/3)*b^(1/3)*e - a^(1/3)*f)*(1 + n)) + ((e
+ f*x)^(1 + n)*Hypergeometric2F1[1, 1 + n, 2 + n, ((-1)^(1/3)*b^(1/3)*(e + f*x))/((-1)^(1/3)*b^(1/3)*e + a^(1/
3)*f)])/(3*a^(2/3)*((-1)^(1/3)*b^(1/3)*e + a^(1/3)*f)*(1 + n))

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rule 68

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((b*c - a*d)^n*(a + b*x)^(m + 1)*Hype
rgeometric2F1[-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b^(n + 1)*(m + 1)), x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rubi steps

\begin{align*} \int \frac{(e+f x)^n}{a+b x^3} \, dx &=\int \left (-\frac{(e+f x)^n}{3 a^{2/3} \left (-\sqrt [3]{a}-\sqrt [3]{b} x\right )}-\frac{(e+f x)^n}{3 a^{2/3} \left (-\sqrt [3]{a}+\sqrt [3]{-1} \sqrt [3]{b} x\right )}-\frac{(e+f x)^n}{3 a^{2/3} \left (-\sqrt [3]{a}-(-1)^{2/3} \sqrt [3]{b} x\right )}\right ) \, dx\\ &=-\frac{\int \frac{(e+f x)^n}{-\sqrt [3]{a}-\sqrt [3]{b} x} \, dx}{3 a^{2/3}}-\frac{\int \frac{(e+f x)^n}{-\sqrt [3]{a}+\sqrt [3]{-1} \sqrt [3]{b} x} \, dx}{3 a^{2/3}}-\frac{\int \frac{(e+f x)^n}{-\sqrt [3]{a}-(-1)^{2/3} \sqrt [3]{b} x} \, dx}{3 a^{2/3}}\\ &=-\frac{(e+f x)^{1+n} \, _2F_1\left (1,1+n;2+n;\frac{\sqrt [3]{b} (e+f x)}{\sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 a^{2/3} \left (\sqrt [3]{b} e-\sqrt [3]{a} f\right ) (1+n)}-\frac{(e+f x)^{1+n} \, _2F_1\left (1,1+n;2+n;\frac{(-1)^{2/3} \sqrt [3]{b} (e+f x)}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{3 a^{2/3} \left ((-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f\right ) (1+n)}+\frac{(e+f x)^{1+n} \, _2F_1\left (1,1+n;2+n;\frac{\sqrt [3]{-1} \sqrt [3]{b} (e+f x)}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}\right )}{3 a^{2/3} \left (\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f\right ) (1+n)}\\ \end{align*}

Mathematica [A]  time = 0.116736, size = 222, normalized size = 0.84 \[ \frac{(e+f x)^{n+1} \left (-\frac{\, _2F_1\left (1,n+1;n+2;\frac{\sqrt [3]{b} (e+f x)}{\sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{\sqrt [3]{b} e-\sqrt [3]{a} f}-\frac{\, _2F_1\left (1,n+1;n+2;\frac{(-1)^{2/3} \sqrt [3]{b} (e+f x)}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}\right )}{(-1)^{2/3} \sqrt [3]{b} e-\sqrt [3]{a} f}+\frac{\, _2F_1\left (1,n+1;n+2;\frac{\sqrt [3]{-1} \sqrt [3]{b} (e+f x)}{\sqrt [3]{-1} \sqrt [3]{b} e+\sqrt [3]{a} f}\right )}{\sqrt [3]{a} f+\sqrt [3]{-1} \sqrt [3]{b} e}\right )}{3 a^{2/3} (n+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[(e + f*x)^n/(a + b*x^3),x]

[Out]

((e + f*x)^(1 + n)*(-(Hypergeometric2F1[1, 1 + n, 2 + n, (b^(1/3)*(e + f*x))/(b^(1/3)*e - a^(1/3)*f)]/(b^(1/3)
*e - a^(1/3)*f)) - Hypergeometric2F1[1, 1 + n, 2 + n, ((-1)^(2/3)*b^(1/3)*(e + f*x))/((-1)^(2/3)*b^(1/3)*e - a
^(1/3)*f)]/((-1)^(2/3)*b^(1/3)*e - a^(1/3)*f) + Hypergeometric2F1[1, 1 + n, 2 + n, ((-1)^(1/3)*b^(1/3)*(e + f*
x))/((-1)^(1/3)*b^(1/3)*e + a^(1/3)*f)]/((-1)^(1/3)*b^(1/3)*e + a^(1/3)*f)))/(3*a^(2/3)*(1 + n))

________________________________________________________________________________________

Maple [F]  time = 0.046, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( fx+e \right ) ^{n}}{b{x}^{3}+a}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x+e)^n/(b*x^3+a),x)

[Out]

int((f*x+e)^n/(b*x^3+a),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (f x + e\right )}^{n}}{b x^{3} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)^n/(b*x^3+a),x, algorithm="maxima")

[Out]

integrate((f*x + e)^n/(b*x^3 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (f x + e\right )}^{n}}{b x^{3} + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)^n/(b*x^3+a),x, algorithm="fricas")

[Out]

integral((f*x + e)^n/(b*x^3 + a), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)**n/(b*x**3+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (f x + e\right )}^{n}}{b x^{3} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)^n/(b*x^3+a),x, algorithm="giac")

[Out]

integrate((f*x + e)^n/(b*x^3 + a), x)