3.160 \(\int \frac{x}{(3+x) \sqrt{1+x^3}} \, dx\)

Optimal. Leaf size=334 \[ -\frac{3 (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \tan ^{-1}\left (\frac{\sqrt{\frac{13}{2}} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}}}{\sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}}}\right )}{\sqrt{26} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}}-\frac{2 \sqrt{2 \left (97+56 \sqrt{3}\right )} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}}-\frac{12 \sqrt [4]{3} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \Pi \left (97-56 \sqrt{3};-\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt{2-\sqrt{3}} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}} \]

[Out]

(-3*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*ArcTan[(Sqrt[13/2]*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2])/Sqrt
[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]])/(Sqrt[26]*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3]) - (2*Sqrt[2*(
97 + 56*Sqrt[3])]*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt
[3] + x)], -7 - 4*Sqrt[3]])/(3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3]) - (12*3^(1/4)*(1 + x)*Sq
rt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticPi[97 - 56*Sqrt[3], -ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)]
, -7 - 4*Sqrt[3]])/(Sqrt[2 - Sqrt[3]]*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.640057, antiderivative size = 334, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {2144, 218, 2142, 2113, 537, 571, 93, 204} \[ -\frac{3 (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \tan ^{-1}\left (\frac{\sqrt{\frac{13}{2}} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}}}{\sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}}}\right )}{\sqrt{26} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}}-\frac{2 \sqrt{2 \left (97+56 \sqrt{3}\right )} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}}-\frac{12 \sqrt [4]{3} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \Pi \left (97-56 \sqrt{3};-\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt{2-\sqrt{3}} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1}} \]

Antiderivative was successfully verified.

[In]

Int[x/((3 + x)*Sqrt[1 + x^3]),x]

[Out]

(-3*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*ArcTan[(Sqrt[13/2]*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2])/Sqrt
[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]])/(Sqrt[26]*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3]) - (2*Sqrt[2*(
97 + 56*Sqrt[3])]*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt
[3] + x)], -7 - 4*Sqrt[3]])/(3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3]) - (12*3^(1/4)*(1 + x)*Sq
rt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticPi[97 - 56*Sqrt[3], -ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)]
, -7 - 4*Sqrt[3]])/(Sqrt[2 - Sqrt[3]]*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])

Rule 2144

Int[((e_.) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{q = Rt[b/a, 3]},
Dist[((1 + Sqrt[3])*f - e*q)/((1 + Sqrt[3])*d - c*q), Int[1/Sqrt[a + b*x^3], x], x] + Dist[(d*e - c*f)/((1 + S
qrt[3])*d - c*q), Int[(1 + Sqrt[3] + q*x)/((c + d*x)*Sqrt[a + b*x^3]), x], x]] /; FreeQ[{a, b, c, d, e, f}, x]
 && NeQ[d*e - c*f, 0] && NeQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6, 0] && NeQ[b^2*e^6 - 20*a*b*e^3*f^3 - 8*a^2*
f^6, 0]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 2142

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{q = Simplify[((1 +
 Sqrt[3])*f)/e]}, Dist[(4*3^(1/4)*Sqrt[2 - Sqrt[3]]*f*(1 + q*x)*Sqrt[(1 - q*x + q^2*x^2)/(1 + Sqrt[3] + q*x)^2
])/(q*Sqrt[a + b*x^3]*Sqrt[(1 + q*x)/(1 + Sqrt[3] + q*x)^2]), Subst[Int[1/(((1 - Sqrt[3])*d - c*q + ((1 + Sqrt
[3])*d - c*q)*x)*Sqrt[1 - x^2]*Sqrt[7 - 4*Sqrt[3] + x^2]), x], x, (-1 + Sqrt[3] - q*x)/(1 + Sqrt[3] + q*x)], x
]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b*e^3 - 2*(5 + 3*Sqrt[3])*a*f^3, 0] && NeQ[b*c^
3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]

Rule 2113

Int[1/(((a_) + (b_.)*(x_))*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[a, Int[1/((
a^2 - b^2*x^2)*Sqrt[c + d*x^2]*Sqrt[e + f*x^2]), x], x] - Dist[b, Int[x/((a^2 - b^2*x^2)*Sqrt[c + d*x^2]*Sqrt[
e + f*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f}, x]

Rule 537

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1*Ellipt
icPi[(b*c)/(a*d), ArcSin[Rt[-(d/c), 2]*x], (c*f)/(d*e)])/(a*Sqrt[c]*Sqrt[e]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-(f/e), -(d/c)
])

Rule 571

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> Dist[1/n, Subst[Int[(a + b*x)^p*(c + d*x)^q*(e + f*x)^r, x], x, x^n], x] /; FreeQ[{a, b, c, d, e,
f, m, n, p, q, r}, x] && EqQ[m - n + 1, 0]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x}{(3+x) \sqrt{1+x^3}} \, dx &=-\frac{3 \int \frac{1+\sqrt{3}+x}{(3+x) \sqrt{1+x^3}} \, dx}{-2+\sqrt{3}}+\frac{\left (1+\sqrt{3}\right ) \int \frac{1}{\sqrt{1+x^3}} \, dx}{-2+\sqrt{3}}\\ &=-\frac{2 \sqrt{2 \left (97+56 \sqrt{3}\right )} (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}-\frac{\left (12 \sqrt [4]{3} \sqrt{2-\sqrt{3}} (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (-2-\sqrt{3}+\left (-2+\sqrt{3}\right ) x\right ) \sqrt{1-x^2} \sqrt{7-4 \sqrt{3}+x^2}} \, dx,x,\frac{-1+\sqrt{3}-x}{1+\sqrt{3}+x}\right )}{\left (-2+\sqrt{3}\right ) \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}\\ &=-\frac{2 \sqrt{2 \left (97+56 \sqrt{3}\right )} (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}+\frac{\left (12 \sqrt [4]{3} \sqrt{2-\sqrt{3}} (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}}\right ) \operatorname{Subst}\left (\int \frac{x}{\sqrt{1-x^2} \sqrt{7-4 \sqrt{3}+x^2} \left (\left (-2-\sqrt{3}\right )^2-\left (-2+\sqrt{3}\right )^2 x^2\right )} \, dx,x,\frac{-1+\sqrt{3}-x}{1+\sqrt{3}+x}\right )}{\sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}-\frac{\left (12 \sqrt [4]{3} \left (-2-\sqrt{3}\right ) \sqrt{2-\sqrt{3}} (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{7-4 \sqrt{3}+x^2} \left (\left (-2-\sqrt{3}\right )^2-\left (-2+\sqrt{3}\right )^2 x^2\right )} \, dx,x,\frac{-1+\sqrt{3}-x}{1+\sqrt{3}+x}\right )}{\left (-2+\sqrt{3}\right ) \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}\\ &=-\frac{2 \sqrt{2 \left (97+56 \sqrt{3}\right )} (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}-\frac{12 \sqrt [4]{3} \sqrt{2+\sqrt{3}} (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} \Pi \left (97-56 \sqrt{3};-\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{\sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}+\frac{\left (6 \sqrt [4]{3} \sqrt{2-\sqrt{3}} (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x} \sqrt{7-4 \sqrt{3}+x} \left (\left (-2-\sqrt{3}\right )^2-\left (-2+\sqrt{3}\right )^2 x\right )} \, dx,x,\frac{\left (-1+\sqrt{3}-x\right )^2}{\left (1+\sqrt{3}+x\right )^2}\right )}{\sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}\\ &=-\frac{2 \sqrt{2 \left (97+56 \sqrt{3}\right )} (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}-\frac{12 \sqrt [4]{3} \sqrt{2+\sqrt{3}} (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} \Pi \left (97-56 \sqrt{3};-\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{\sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}+\frac{\left (12 \sqrt [4]{3} \sqrt{2-\sqrt{3}} (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}}\right ) \operatorname{Subst}\left (\int \frac{1}{-\left (-2-\sqrt{3}\right )^2+\left (-2+\sqrt{3}\right )^2-\left (\left (-2-\sqrt{3}\right )^2+\left (7-4 \sqrt{3}\right ) \left (-2+\sqrt{3}\right )^2\right ) x^2} \, dx,x,\frac{\sqrt [4]{3} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}}}{\sqrt{-\frac{\left (-2+\sqrt{3}\right ) \left (1-x+x^2\right )}{\left (1+\sqrt{3}+x\right )^2}}}\right )}{\sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}\\ &=-\frac{3 (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} \tan ^{-1}\left (\frac{\sqrt{\frac{13}{2}} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}}}{\sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}}}\right )}{\sqrt{26} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}-\frac{2 \sqrt{2 \left (97+56 \sqrt{3}\right )} (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}-\frac{12 \sqrt [4]{3} \sqrt{2+\sqrt{3}} (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} \Pi \left (97-56 \sqrt{3};-\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{\sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}\\ \end{align*}

Mathematica [C]  time = 0.224484, size = 194, normalized size = 0.58 \[ \frac{2 \sqrt{\frac{x+1}{1+\sqrt [3]{-1}}} \left (-\frac{\left (\sqrt [3]{-1}-x\right ) \sqrt{\frac{\sqrt [3]{-1}-(-1)^{2/3} x}{1+\sqrt [3]{-1}}} F\left (\sin ^{-1}\left (\sqrt{\frac{(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )}{\sqrt{\frac{(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}}+\frac{3 i \sqrt{x^2-x+1} \Pi \left (\frac{i \sqrt{3}}{3+\sqrt [3]{-1}};\sin ^{-1}\left (\sqrt{\frac{(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )}{3+\sqrt [3]{-1}}\right )}{\sqrt{x^3+1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x/((3 + x)*Sqrt[1 + x^3]),x]

[Out]

(2*Sqrt[(1 + x)/(1 + (-1)^(1/3))]*(-((((-1)^(1/3) - x)*Sqrt[((-1)^(1/3) - (-1)^(2/3)*x)/(1 + (-1)^(1/3))]*Elli
pticF[ArcSin[Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)])/Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))
]) + ((3*I)*Sqrt[1 - x + x^2]*EllipticPi[(I*Sqrt[3])/(3 + (-1)^(1/3)), ArcSin[Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1
)^(1/3))]], (-1)^(1/3)])/(3 + (-1)^(1/3))))/Sqrt[1 + x^3]

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 240, normalized size = 0.7 \begin{align*} 2\,{\frac{3/2-i/2\sqrt{3}}{\sqrt{{x}^{3}+1}}\sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2-i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2+i/2\sqrt{3}}{-3/2+i/2\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}},\sqrt{{\frac{-3/2+i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}} \right ) }-3\,{\frac{3/2-i/2\sqrt{3}}{\sqrt{{x}^{3}+1}}\sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2-i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2+i/2\sqrt{3}}{-3/2+i/2\sqrt{3}}}}{\it EllipticPi} \left ( \sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}},-3/4+i/4\sqrt{3},\sqrt{{\frac{-3/2+i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(3+x)/(x^3+1)^(1/2),x)

[Out]

2*(3/2-1/2*I*3^(1/2))*((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x
-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*EllipticF(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),((-3
/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))-3*(3/2-1/2*I*3^(1/2))*((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2
-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*E
llipticPi(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),-3/4+1/4*I*3^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/
2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{x^{3} + 1}{\left (x + 3\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(3+x)/(x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(x/(sqrt(x^3 + 1)*(x + 3)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{x^{3} + 1} x}{x^{4} + 3 \, x^{3} + x + 3}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(3+x)/(x^3+1)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(x^3 + 1)*x/(x^4 + 3*x^3 + x + 3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{\left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (x + 3\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(3+x)/(x**3+1)**(1/2),x)

[Out]

Integral(x/(sqrt((x + 1)*(x**2 - x + 1))*(x + 3)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{\sqrt{x^{3} + 1}{\left (x + 3\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(3+x)/(x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate(x/(sqrt(x^3 + 1)*(x + 3)), x)