3.144 \(\int \frac{1+\sqrt{3}+x}{(c+d x) \sqrt{1+x^3}} \, dx\)

Optimal. Leaf size=319 \[ -\frac{(x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (c-\left (1+\sqrt{3}\right ) d\right ) \tan ^{-1}\left (\frac{\sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{c^2+c d+d^2}}{\sqrt{d} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{c-d}}\right )}{\sqrt{d} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1} \sqrt{c-d} \sqrt{c^2+c d+d^2}}-\frac{4 \sqrt [4]{3} \sqrt{2+\sqrt{3}} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \Pi \left (\frac{\left (c-\left (1+\sqrt{3}\right ) d\right )^2}{\left (c-\left (1-\sqrt{3}\right ) d\right )^2};-\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1} \left (c-\left (1-\sqrt{3}\right ) d\right )} \]

[Out]

-(((c - (1 + Sqrt[3])*d)*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*ArcTan[(Sqrt[c^2 + c*d + d^2]*Sqrt[(1
 + x)/(1 + Sqrt[3] + x)^2])/(Sqrt[c - d]*Sqrt[d]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2])])/(Sqrt[c - d]*Sqrt[
d]*Sqrt[c^2 + c*d + d^2]*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])) - (4*3^(1/4)*Sqrt[2 + Sqrt[3]]*(1 +
 x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticPi[(c - (1 + Sqrt[3])*d)^2/(c - (1 - Sqrt[3])*d)^2, -ArcSi
n[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/((c - (1 - Sqrt[3])*d)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)
^2]*Sqrt[1 + x^3])

________________________________________________________________________________________

Rubi [A]  time = 1.23982, antiderivative size = 319, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {2142, 2113, 537, 571, 93, 205} \[ -\frac{(x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \left (c-\left (1+\sqrt{3}\right ) d\right ) \tan ^{-1}\left (\frac{\sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{c^2+c d+d^2}}{\sqrt{d} \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{c-d}}\right )}{\sqrt{d} \sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1} \sqrt{c-d} \sqrt{c^2+c d+d^2}}-\frac{4 \sqrt [4]{3} \sqrt{2+\sqrt{3}} (x+1) \sqrt{\frac{x^2-x+1}{\left (x+\sqrt{3}+1\right )^2}} \Pi \left (\frac{\left (c-\left (1+\sqrt{3}\right ) d\right )^2}{\left (c-\left (1-\sqrt{3}\right ) d\right )^2};-\sin ^{-1}\left (\frac{x-\sqrt{3}+1}{x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt{\frac{x+1}{\left (x+\sqrt{3}+1\right )^2}} \sqrt{x^3+1} \left (c-\left (1-\sqrt{3}\right ) d\right )} \]

Antiderivative was successfully verified.

[In]

Int[(1 + Sqrt[3] + x)/((c + d*x)*Sqrt[1 + x^3]),x]

[Out]

-(((c - (1 + Sqrt[3])*d)*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*ArcTan[(Sqrt[c^2 + c*d + d^2]*Sqrt[(1
 + x)/(1 + Sqrt[3] + x)^2])/(Sqrt[c - d]*Sqrt[d]*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2])])/(Sqrt[c - d]*Sqrt[
d]*Sqrt[c^2 + c*d + d^2]*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])) - (4*3^(1/4)*Sqrt[2 + Sqrt[3]]*(1 +
 x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticPi[(c - (1 + Sqrt[3])*d)^2/(c - (1 - Sqrt[3])*d)^2, -ArcSi
n[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/((c - (1 - Sqrt[3])*d)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)
^2]*Sqrt[1 + x^3])

Rule 2142

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{q = Simplify[((1 +
 Sqrt[3])*f)/e]}, Dist[(4*3^(1/4)*Sqrt[2 - Sqrt[3]]*f*(1 + q*x)*Sqrt[(1 - q*x + q^2*x^2)/(1 + Sqrt[3] + q*x)^2
])/(q*Sqrt[a + b*x^3]*Sqrt[(1 + q*x)/(1 + Sqrt[3] + q*x)^2]), Subst[Int[1/(((1 - Sqrt[3])*d - c*q + ((1 + Sqrt
[3])*d - c*q)*x)*Sqrt[1 - x^2]*Sqrt[7 - 4*Sqrt[3] + x^2]), x], x, (-1 + Sqrt[3] - q*x)/(1 + Sqrt[3] + q*x)], x
]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b*e^3 - 2*(5 + 3*Sqrt[3])*a*f^3, 0] && NeQ[b*c^
3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]

Rule 2113

Int[1/(((a_) + (b_.)*(x_))*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[a, Int[1/((
a^2 - b^2*x^2)*Sqrt[c + d*x^2]*Sqrt[e + f*x^2]), x], x] - Dist[b, Int[x/((a^2 - b^2*x^2)*Sqrt[c + d*x^2]*Sqrt[
e + f*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f}, x]

Rule 537

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1*Ellipt
icPi[(b*c)/(a*d), ArcSin[Rt[-(d/c), 2]*x], (c*f)/(d*e)])/(a*Sqrt[c]*Sqrt[e]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b,
 c, d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-(f/e), -(d/c)
])

Rule 571

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> Dist[1/n, Subst[Int[(a + b*x)^p*(c + d*x)^q*(e + f*x)^r, x], x, x^n], x] /; FreeQ[{a, b, c, d, e,
f, m, n, p, q, r}, x] && EqQ[m - n + 1, 0]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1+\sqrt{3}+x}{(c+d x) \sqrt{1+x^3}} \, dx &=\frac{\left (4 \sqrt [4]{3} \sqrt{2-\sqrt{3}} (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}}\right ) \operatorname{Subst}\left (\int \frac{1}{\left (-c+\left (1-\sqrt{3}\right ) d+\left (-c+\left (1+\sqrt{3}\right ) d\right ) x\right ) \sqrt{1-x^2} \sqrt{7-4 \sqrt{3}+x^2}} \, dx,x,\frac{-1+\sqrt{3}-x}{1+\sqrt{3}+x}\right )}{\sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}\\ &=-\frac{\left (4 \sqrt [4]{3} \sqrt{2-\sqrt{3}} \left (-c+d+\sqrt{3} d\right ) (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}}\right ) \operatorname{Subst}\left (\int \frac{x}{\sqrt{1-x^2} \sqrt{7-4 \sqrt{3}+x^2} \left (\left (-c+\left (1-\sqrt{3}\right ) d\right )^2-\left (-c+\left (1+\sqrt{3}\right ) d\right )^2 x^2\right )} \, dx,x,\frac{-1+\sqrt{3}-x}{1+\sqrt{3}+x}\right )}{\sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}+\frac{\left (4 \sqrt [4]{3} \sqrt{2-\sqrt{3}} \left (-c+\left (1-\sqrt{3}\right ) d\right ) (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{7-4 \sqrt{3}+x^2} \left (\left (-c+\left (1-\sqrt{3}\right ) d\right )^2-\left (-c+\left (1+\sqrt{3}\right ) d\right )^2 x^2\right )} \, dx,x,\frac{-1+\sqrt{3}-x}{1+\sqrt{3}+x}\right )}{\sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}\\ &=-\frac{4 \sqrt [4]{3} \sqrt{2+\sqrt{3}} (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} \Pi \left (\frac{\left (c-\left (1+\sqrt{3}\right ) d\right )^2}{\left (c-\left (1-\sqrt{3}\right ) d\right )^2};-\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{\left (c-\left (1-\sqrt{3}\right ) d\right ) \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}-\frac{\left (2 \sqrt [4]{3} \sqrt{2-\sqrt{3}} \left (-c+d+\sqrt{3} d\right ) (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x} \sqrt{7-4 \sqrt{3}+x} \left (\left (-c+\left (1-\sqrt{3}\right ) d\right )^2-\left (-c+\left (1+\sqrt{3}\right ) d\right )^2 x\right )} \, dx,x,\frac{\left (-1+\sqrt{3}-x\right )^2}{\left (1+\sqrt{3}+x\right )^2}\right )}{\sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}\\ &=-\frac{4 \sqrt [4]{3} \sqrt{2+\sqrt{3}} (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} \Pi \left (\frac{\left (c-\left (1+\sqrt{3}\right ) d\right )^2}{\left (c-\left (1-\sqrt{3}\right ) d\right )^2};-\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{\left (c-\left (1-\sqrt{3}\right ) d\right ) \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}-\frac{\left (4 \sqrt [4]{3} \sqrt{2-\sqrt{3}} \left (-c+d+\sqrt{3} d\right ) (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}}\right ) \operatorname{Subst}\left (\int \frac{1}{-\left (-c+\left (1-\sqrt{3}\right ) d\right )^2+\left (-c+\left (1+\sqrt{3}\right ) d\right )^2-\left (\left (-c+\left (1-\sqrt{3}\right ) d\right )^2+\left (7-4 \sqrt{3}\right ) \left (-c+\left (1+\sqrt{3}\right ) d\right )^2\right ) x^2} \, dx,x,\frac{\sqrt [4]{3} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}}}{\sqrt{-\frac{\left (-2+\sqrt{3}\right ) \left (1-x+x^2\right )}{\left (1+\sqrt{3}+x\right )^2}}}\right )}{\sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}\\ &=-\frac{\left (c-d-\sqrt{3} d\right ) (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} \tan ^{-1}\left (\frac{\sqrt{c^2+c d+d^2} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}}}{\sqrt{c-d} \sqrt{d} \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}}}\right )}{\sqrt{c-d} \sqrt{d} \sqrt{c^2+c d+d^2} \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}-\frac{4 \sqrt [4]{3} \sqrt{2+\sqrt{3}} (1+x) \sqrt{\frac{1-x+x^2}{\left (1+\sqrt{3}+x\right )^2}} \Pi \left (\frac{\left (c-\left (1+\sqrt{3}\right ) d\right )^2}{\left (c-\left (1-\sqrt{3}\right ) d\right )^2};-\sin ^{-1}\left (\frac{1-\sqrt{3}+x}{1+\sqrt{3}+x}\right )|-7-4 \sqrt{3}\right )}{\left (c-\left (1-\sqrt{3}\right ) d\right ) \sqrt{\frac{1+x}{\left (1+\sqrt{3}+x\right )^2}} \sqrt{1+x^3}}\\ \end{align*}

Mathematica [C]  time = 0.633153, size = 214, normalized size = 0.67 \[ \frac{2 \sqrt{\frac{x+1}{1+\sqrt [3]{-1}}} \left (-\frac{\left (\sqrt [3]{-1}-x\right ) \sqrt{\frac{\sqrt [3]{-1}-(-1)^{2/3} x}{1+\sqrt [3]{-1}}} F\left (\sin ^{-1}\left (\sqrt{\frac{(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )}{\sqrt{\frac{(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}}+\frac{i \sqrt{x^2-x+1} \left (c-\left (1+\sqrt{3}\right ) d\right ) \Pi \left (\frac{i \sqrt{3} d}{c+\sqrt [3]{-1} d};\sin ^{-1}\left (\sqrt{\frac{(-1)^{2/3} x+1}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )}{c+\sqrt [3]{-1} d}\right )}{d \sqrt{x^3+1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(1 + Sqrt[3] + x)/((c + d*x)*Sqrt[1 + x^3]),x]

[Out]

(2*Sqrt[(1 + x)/(1 + (-1)^(1/3))]*(-((((-1)^(1/3) - x)*Sqrt[((-1)^(1/3) - (-1)^(2/3)*x)/(1 + (-1)^(1/3))]*Elli
pticF[ArcSin[Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)])/Sqrt[(1 + (-1)^(2/3)*x)/(1 + (-1)^(1/3))
]) + (I*(c - (1 + Sqrt[3])*d)*Sqrt[1 - x + x^2]*EllipticPi[(I*Sqrt[3]*d)/(c + (-1)^(1/3)*d), ArcSin[Sqrt[(1 +
(-1)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)])/(c + (-1)^(1/3)*d)))/(d*Sqrt[1 + x^3])

________________________________________________________________________________________

Maple [A]  time = 0.036, size = 275, normalized size = 0.9 \begin{align*} 2\,{\frac{3/2-i/2\sqrt{3}}{d\sqrt{{x}^{3}+1}}\sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2-i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2+i/2\sqrt{3}}{-3/2+i/2\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}},\sqrt{{\frac{-3/2+i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}} \right ) }+2\,{\frac{ \left ( d\sqrt{3}-c+d \right ) \left ( 3/2-i/2\sqrt{3} \right ) }{{d}^{2}\sqrt{{x}^{3}+1}}\sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2-i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x-1/2+i/2\sqrt{3}}{-3/2+i/2\sqrt{3}}}}{\it EllipticPi} \left ( \sqrt{{\frac{1+x}{3/2-i/2\sqrt{3}}}},{(-3/2+i/2\sqrt{3}) \left ( -1+{\frac{c}{d}} \right ) ^{-1}},\sqrt{{\frac{-3/2+i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}} \right ) \left ( -1+{\frac{c}{d}} \right ) ^{-1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1+x+3^(1/2))/(d*x+c)/(x^3+1)^(1/2),x)

[Out]

2/d*(3/2-1/2*I*3^(1/2))*((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*(
(x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(x^3+1)^(1/2)*EllipticF(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),((
-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))+2*(d*3^(1/2)-c+d)/d^2*(3/2-1/2*I*3^(1/2))*((1+x)/(3/2-1/2*I*3
^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))
^(1/2)/(x^3+1)^(1/2)/(-1+c/d)*EllipticPi(((1+x)/(3/2-1/2*I*3^(1/2)))^(1/2),(-3/2+1/2*I*3^(1/2))/(-1+c/d),((-3/
2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x + \sqrt{3} + 1}{\sqrt{x^{3} + 1}{\left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x+3^(1/2))/(d*x+c)/(x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate((x + sqrt(3) + 1)/(sqrt(x^3 + 1)*(d*x + c)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x+3^(1/2))/(d*x+c)/(x^3+1)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x + 1 + \sqrt{3}}{\sqrt{\left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (c + d x\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x+3**(1/2))/(d*x+c)/(x**3+1)**(1/2),x)

[Out]

Integral((x + 1 + sqrt(3))/(sqrt((x + 1)*(x**2 - x + 1))*(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x + \sqrt{3} + 1}{\sqrt{x^{3} + 1}{\left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1+x+3^(1/2))/(d*x+c)/(x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate((x + sqrt(3) + 1)/(sqrt(x^3 + 1)*(d*x + c)), x)