3.137 \(\int \frac{x}{(1+\sqrt{3}-x) \sqrt{-1+x^3}} \, dx\)

Optimal. Leaf size=164 \[ \frac{2 \sqrt{\frac{7}{6}-\frac{2}{\sqrt{3}}} (1-x) \sqrt{\frac{x^2+x+1}{\left (-x-\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{-x+\sqrt{3}+1}{-x-\sqrt{3}+1}\right )|-7+4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{-\frac{1-x}{\left (-x-\sqrt{3}+1\right )^2}} \sqrt{x^3-1}}-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{3+2 \sqrt{3}} (1-x)}{\sqrt{x^3-1}}\right )}{3^{3/4}} \]

[Out]

-((Sqrt[2]*ArcTanh[(Sqrt[3 + 2*Sqrt[3]]*(1 - x))/Sqrt[-1 + x^3]])/3^(3/4)) + (2*Sqrt[7/6 - 2/Sqrt[3]]*(1 - x)*
Sqrt[(1 + x + x^2)/(1 - Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 + Sqrt[3] - x)/(1 - Sqrt[3] - x)], -7 + 4*Sqrt[3]]
)/(3^(1/4)*Sqrt[-((1 - x)/(1 - Sqrt[3] - x)^2)]*Sqrt[-1 + x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.218447, antiderivative size = 164, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {2141, 219, 2140, 206} \[ \frac{2 \sqrt{\frac{7}{6}-\frac{2}{\sqrt{3}}} (1-x) \sqrt{\frac{x^2+x+1}{\left (-x-\sqrt{3}+1\right )^2}} F\left (\sin ^{-1}\left (\frac{-x+\sqrt{3}+1}{-x-\sqrt{3}+1}\right )|-7+4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{-\frac{1-x}{\left (-x-\sqrt{3}+1\right )^2}} \sqrt{x^3-1}}-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{3+2 \sqrt{3}} (1-x)}{\sqrt{x^3-1}}\right )}{3^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[x/((1 + Sqrt[3] - x)*Sqrt[-1 + x^3]),x]

[Out]

-((Sqrt[2]*ArcTanh[(Sqrt[3 + 2*Sqrt[3]]*(1 - x))/Sqrt[-1 + x^3]])/3^(3/4)) + (2*Sqrt[7/6 - 2/Sqrt[3]]*(1 - x)*
Sqrt[(1 + x + x^2)/(1 - Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 + Sqrt[3] - x)/(1 - Sqrt[3] - x)], -7 + 4*Sqrt[3]]
)/(3^(1/4)*Sqrt[-((1 - x)/(1 - Sqrt[3] - x)^2)]*Sqrt[-1 + x^3])

Rule 2141

Int[((e_.) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> -Dist[(6*a*d^4*e - c*f*
(b*c^3 - 22*a*d^3))/(c*d*(b*c^3 - 28*a*d^3)), Int[1/Sqrt[a + b*x^3], x], x] + Dist[(d*e - c*f)/(c*d*(b*c^3 - 2
8*a*d^3)), Int[(c*(b*c^3 - 22*a*d^3) + 6*a*d^4*x)/((c + d*x)*Sqrt[a + b*x^3]), x], x] /; FreeQ[{a, b, c, d, e,
 f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6, 0] && NeQ[6*a*d^4*e - c*f*(b*c^3 - 2
2*a*d^3), 0]

Rule 219

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 - Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 + Sqrt[3
])*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[-((s*(s + r*x))/((1 - S
qrt[3])*s + r*x)^2)]), x]] /; FreeQ[{a, b}, x] && NegQ[a]

Rule 2140

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{k = Simplify[(d*e
+ 2*c*f)/(c*f)]}, Dist[((1 + k)*e)/d, Subst[Int[1/(1 + (3 + 2*k)*a*x^2), x], x, (1 + ((1 + k)*d*x)/c)/Sqrt[a +
 b*x^3]], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6
, 0] && EqQ[6*a*d^4*e - c*f*(b*c^3 - 22*a*d^3), 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x}{\left (1+\sqrt{3}-x\right ) \sqrt{-1+x^3}} \, dx &=-\frac{\left (-1-\sqrt{3}\right ) \int \frac{\left (1+\sqrt{3}\right ) \left (-22+\left (1+\sqrt{3}\right )^3\right )-6 x}{\left (1+\sqrt{3}-x\right ) \sqrt{-1+x^3}} \, dx}{\left (1+\sqrt{3}\right ) \left (-28+\left (1+\sqrt{3}\right )^3\right )}-\frac{\left (-22+\left (1+\sqrt{3}\right )^3\right ) \int \frac{1}{\sqrt{-1+x^3}} \, dx}{-28+\left (1+\sqrt{3}\right )^3}\\ &=\frac{2 \sqrt{\frac{7}{6}-\frac{2}{\sqrt{3}}} (1-x) \sqrt{\frac{1+x+x^2}{\left (1-\sqrt{3}-x\right )^2}} F\left (\sin ^{-1}\left (\frac{1+\sqrt{3}-x}{1-\sqrt{3}-x}\right )|-7+4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{-\frac{1-x}{\left (1-\sqrt{3}-x\right )^2}} \sqrt{-1+x^3}}-\frac{\left (12 \left (-1-\sqrt{3}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1-\left (3+2 \sqrt{3}\right ) x^2} \, dx,x,\frac{1-x}{\sqrt{-1+x^3}}\right )}{\left (1+\sqrt{3}\right ) \left (-28+\left (1+\sqrt{3}\right )^3\right )}\\ &=-\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{3+2 \sqrt{3}} (1-x)}{\sqrt{-1+x^3}}\right )}{3^{3/4}}+\frac{2 \sqrt{\frac{7}{6}-\frac{2}{\sqrt{3}}} (1-x) \sqrt{\frac{1+x+x^2}{\left (1-\sqrt{3}-x\right )^2}} F\left (\sin ^{-1}\left (\frac{1+\sqrt{3}-x}{1-\sqrt{3}-x}\right )|-7+4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{-\frac{1-x}{\left (1-\sqrt{3}-x\right )^2}} \sqrt{-1+x^3}}\\ \end{align*}

Mathematica [C]  time = 0.282499, size = 230, normalized size = 1.4 \[ \frac{2 i \sqrt{\frac{1-x}{1+\sqrt [3]{-1}}} \left (2 \left (1+\sqrt{3}\right ) \sqrt{x^2+x+1} \Pi \left (\frac{2 i \sqrt{3}}{3+(2+i) \sqrt{3}};\sin ^{-1}\left (\sqrt{\frac{1-(-1)^{2/3} x}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )+\frac{i \sqrt{\frac{(-1)^{2/3} x+\sqrt [3]{-1}}{1+\sqrt [3]{-1}}} \left (\left (3+(2+i) \sqrt{3}\right ) x+(1+2 i) \sqrt{3}+3 i\right ) F\left (\sin ^{-1}\left (\sqrt{\frac{1-(-1)^{2/3} x}{1+\sqrt [3]{-1}}}\right )|\sqrt [3]{-1}\right )}{\sqrt{\frac{1-(-1)^{2/3} x}{1+\sqrt [3]{-1}}}}\right )}{\left (3+(2+i) \sqrt{3}\right ) \sqrt{x^3-1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x/((1 + Sqrt[3] - x)*Sqrt[-1 + x^3]),x]

[Out]

((2*I)*Sqrt[(1 - x)/(1 + (-1)^(1/3))]*((I*Sqrt[((-1)^(1/3) + (-1)^(2/3)*x)/(1 + (-1)^(1/3))]*(3*I + (1 + 2*I)*
Sqrt[3] + (3 + (2 + I)*Sqrt[3])*x)*EllipticF[ArcSin[Sqrt[(1 - (-1)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)])/S
qrt[(1 - (-1)^(2/3)*x)/(1 + (-1)^(1/3))] + 2*(1 + Sqrt[3])*Sqrt[1 + x + x^2]*EllipticPi[((2*I)*Sqrt[3])/(3 + (
2 + I)*Sqrt[3]), ArcSin[Sqrt[(1 - (-1)^(2/3)*x)/(1 + (-1)^(1/3))]], (-1)^(1/3)]))/((3 + (2 + I)*Sqrt[3])*Sqrt[
-1 + x^3])

________________________________________________________________________________________

Maple [A]  time = 0.017, size = 255, normalized size = 1.6 \begin{align*} -2\,{\frac{-3/2-i/2\sqrt{3}}{\sqrt{{x}^{3}-1}}\sqrt{{\frac{x-1}{-3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x+1/2-i/2\sqrt{3}}{3/2-i/2\sqrt{3}}}}\sqrt{{\frac{x+1/2+i/2\sqrt{3}}{3/2+i/2\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{{\frac{x-1}{-3/2-i/2\sqrt{3}}}},\sqrt{{\frac{3/2+i/2\sqrt{3}}{3/2-i/2\sqrt{3}}}} \right ) }-{\frac{ \left ( -2\,\sqrt{3}-2 \right ) \left ( -{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}{3}\sqrt{{\frac{x-1}{-{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}}}}\sqrt{{\frac{1}{{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}} \left ( x+{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) }}\sqrt{{\frac{1}{{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}} \left ( x+{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3} \right ) }}{\it EllipticPi} \left ( \sqrt{{\frac{x-1}{-{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}}}},-{\frac{ \left ({\frac{3}{2}}+{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}{3}},\sqrt{{\frac{{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}{{\frac{3}{2}}-{\frac{i}{2}}\sqrt{3}}}} \right ){\frac{1}{\sqrt{{x}^{3}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(1-x+3^(1/2))/(x^3-1)^(1/2),x)

[Out]

-2*(-3/2-1/2*I*3^(1/2))*((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2-1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2)*(
(x+1/2+1/2*I*3^(1/2))/(3/2+1/2*I*3^(1/2)))^(1/2)/(x^3-1)^(1/2)*EllipticF(((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2),((
3/2+1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2))-2/3*(-3^(1/2)-1)*(-3/2-1/2*I*3^(1/2))*((x-1)/(-3/2-1/2*I*3^(1/2
)))^(1/2)*((x+1/2-1/2*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2)*((x+1/2+1/2*I*3^(1/2))/(3/2+1/2*I*3^(1/2)))^(1/2)/
(x^3-1)^(1/2)*3^(1/2)*EllipticPi(((x-1)/(-3/2-1/2*I*3^(1/2)))^(1/2),-1/3*(3/2+1/2*I*3^(1/2))*3^(1/2),((3/2+1/2
*I*3^(1/2))/(3/2-1/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{x}{\sqrt{x^{3} - 1}{\left (x - \sqrt{3} - 1\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(1-x+3^(1/2))/(x^3-1)^(1/2),x, algorithm="maxima")

[Out]

-integrate(x/(sqrt(x^3 - 1)*(x - sqrt(3) - 1)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{x^{3} - 1}{\left (x^{2} + \sqrt{3} x - x\right )}}{x^{5} - 2 \, x^{4} - 2 \, x^{3} - x^{2} + 2 \, x + 2}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(1-x+3^(1/2))/(x^3-1)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(x^3 - 1)*(x^2 + sqrt(3)*x - x)/(x^5 - 2*x^4 - 2*x^3 - x^2 + 2*x + 2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{x}{x \sqrt{x^{3} - 1} - \sqrt{3} \sqrt{x^{3} - 1} - \sqrt{x^{3} - 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(1-x+3**(1/2))/(x**3-1)**(1/2),x)

[Out]

-Integral(x/(x*sqrt(x**3 - 1) - sqrt(3)*sqrt(x**3 - 1) - sqrt(x**3 - 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{x}{\sqrt{x^{3} - 1}{\left (x - \sqrt{3} - 1\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(1-x+3^(1/2))/(x^3-1)^(1/2),x, algorithm="giac")

[Out]

integrate(-x/(sqrt(x^3 - 1)*(x - sqrt(3) - 1)), x)