3.128 \(\int \frac{e+f x}{(1+\sqrt{3}-x) \sqrt{1-x^3}} \, dx\)

Optimal. Leaf size=187 \[ -\frac{\left (e+\sqrt{3} f+f\right ) \tan ^{-1}\left (\frac{\sqrt{3+2 \sqrt{3}} (1-x)}{\sqrt{1-x^3}}\right )}{\sqrt{3 \left (3+2 \sqrt{3}\right )}}-\frac{\sqrt{2+\sqrt{3}} (1-x) \sqrt{\frac{x^2+x+1}{\left (-x+\sqrt{3}+1\right )^2}} \left (e+\left (1-\sqrt{3}\right ) f\right ) F\left (\sin ^{-1}\left (\frac{-x-\sqrt{3}+1}{-x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{3^{3/4} \sqrt{\frac{1-x}{\left (-x+\sqrt{3}+1\right )^2}} \sqrt{1-x^3}} \]

[Out]

-(((e + f + Sqrt[3]*f)*ArcTan[(Sqrt[3 + 2*Sqrt[3]]*(1 - x))/Sqrt[1 - x^3]])/Sqrt[3*(3 + 2*Sqrt[3])]) - (Sqrt[2
 + Sqrt[3]]*(e + (1 - Sqrt[3])*f)*(1 - x)*Sqrt[(1 + x + x^2)/(1 + Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 - Sqrt[3
] - x)/(1 + Sqrt[3] - x)], -7 - 4*Sqrt[3]])/(3^(3/4)*Sqrt[(1 - x)/(1 + Sqrt[3] - x)^2]*Sqrt[1 - x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.276521, antiderivative size = 187, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.138, Rules used = {2141, 218, 2140, 203} \[ -\frac{\left (e+\sqrt{3} f+f\right ) \tan ^{-1}\left (\frac{\sqrt{3+2 \sqrt{3}} (1-x)}{\sqrt{1-x^3}}\right )}{\sqrt{3 \left (3+2 \sqrt{3}\right )}}-\frac{\sqrt{2+\sqrt{3}} (1-x) \sqrt{\frac{x^2+x+1}{\left (-x+\sqrt{3}+1\right )^2}} \left (e+\left (1-\sqrt{3}\right ) f\right ) F\left (\sin ^{-1}\left (\frac{-x-\sqrt{3}+1}{-x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{3^{3/4} \sqrt{\frac{1-x}{\left (-x+\sqrt{3}+1\right )^2}} \sqrt{1-x^3}} \]

Antiderivative was successfully verified.

[In]

Int[(e + f*x)/((1 + Sqrt[3] - x)*Sqrt[1 - x^3]),x]

[Out]

-(((e + f + Sqrt[3]*f)*ArcTan[(Sqrt[3 + 2*Sqrt[3]]*(1 - x))/Sqrt[1 - x^3]])/Sqrt[3*(3 + 2*Sqrt[3])]) - (Sqrt[2
 + Sqrt[3]]*(e + (1 - Sqrt[3])*f)*(1 - x)*Sqrt[(1 + x + x^2)/(1 + Sqrt[3] - x)^2]*EllipticF[ArcSin[(1 - Sqrt[3
] - x)/(1 + Sqrt[3] - x)], -7 - 4*Sqrt[3]])/(3^(3/4)*Sqrt[(1 - x)/(1 + Sqrt[3] - x)^2]*Sqrt[1 - x^3])

Rule 2141

Int[((e_.) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> -Dist[(6*a*d^4*e - c*f*
(b*c^3 - 22*a*d^3))/(c*d*(b*c^3 - 28*a*d^3)), Int[1/Sqrt[a + b*x^3], x], x] + Dist[(d*e - c*f)/(c*d*(b*c^3 - 2
8*a*d^3)), Int[(c*(b*c^3 - 22*a*d^3) + 6*a*d^4*x)/((c + d*x)*Sqrt[a + b*x^3]), x], x] /; FreeQ[{a, b, c, d, e,
 f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6, 0] && NeQ[6*a*d^4*e - c*f*(b*c^3 - 2
2*a*d^3), 0]

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 2140

Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{k = Simplify[(d*e
+ 2*c*f)/(c*f)]}, Dist[((1 + k)*e)/d, Subst[Int[1/(1 + (3 + 2*k)*a*x^2), x], x, (1 + ((1 + k)*d*x)/c)/Sqrt[a +
 b*x^3]], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6
, 0] && EqQ[6*a*d^4*e - c*f*(b*c^3 - 22*a*d^3), 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{e+f x}{\left (1+\sqrt{3}-x\right ) \sqrt{1-x^3}} \, dx &=-\frac{\left (-e-\left (1+\sqrt{3}\right ) f\right ) \int \frac{\left (1+\sqrt{3}\right ) \left (22-\left (1+\sqrt{3}\right )^3\right )+6 x}{\left (1+\sqrt{3}-x\right ) \sqrt{1-x^3}} \, dx}{\left (1+\sqrt{3}\right ) \left (28-\left (1+\sqrt{3}\right )^3\right )}+\frac{\left (6 e-\left (1+\sqrt{3}\right ) \left (22-\left (1+\sqrt{3}\right )^3\right ) f\right ) \int \frac{1}{\sqrt{1-x^3}} \, dx}{\left (1+\sqrt{3}\right ) \left (28-\left (1+\sqrt{3}\right )^3\right )}\\ &=-\frac{\sqrt{2+\sqrt{3}} \left (e+\left (1-\sqrt{3}\right ) f\right ) (1-x) \sqrt{\frac{1+x+x^2}{\left (1+\sqrt{3}-x\right )^2}} F\left (\sin ^{-1}\left (\frac{1-\sqrt{3}-x}{1+\sqrt{3}-x}\right )|-7-4 \sqrt{3}\right )}{3^{3/4} \sqrt{\frac{1-x}{\left (1+\sqrt{3}-x\right )^2}} \sqrt{1-x^3}}+\frac{\left (12 \left (-e-\left (1+\sqrt{3}\right ) f\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1+\left (3+2 \sqrt{3}\right ) x^2} \, dx,x,\frac{1-x}{\sqrt{1-x^3}}\right )}{\left (1+\sqrt{3}\right ) \left (28-\left (1+\sqrt{3}\right )^3\right )}\\ &=-\frac{\left (e+f+\sqrt{3} f\right ) \tan ^{-1}\left (\frac{\sqrt{3+2 \sqrt{3}} (1-x)}{\sqrt{1-x^3}}\right )}{\sqrt{3 \left (3+2 \sqrt{3}\right )}}-\frac{\sqrt{2+\sqrt{3}} \left (e+\left (1-\sqrt{3}\right ) f\right ) (1-x) \sqrt{\frac{1+x+x^2}{\left (1+\sqrt{3}-x\right )^2}} F\left (\sin ^{-1}\left (\frac{1-\sqrt{3}-x}{1+\sqrt{3}-x}\right )|-7-4 \sqrt{3}\right )}{3^{3/4} \sqrt{\frac{1-x}{\left (1+\sqrt{3}-x\right )^2}} \sqrt{1-x^3}}\\ \end{align*}

Mathematica [C]  time = 0.542383, size = 291, normalized size = 1.56 \[ \frac{2 \sqrt{\frac{2}{3}} \sqrt{-\frac{i (x-1)}{\sqrt{3}+3 i}} \left (2 \sqrt{2 i x+\sqrt{3}+i} \sqrt{x^2+x+1} \left (\sqrt{3} e+\left (3+\sqrt{3}\right ) f\right ) \Pi \left (\frac{2 \sqrt{3}}{3 i+(1+2 i) \sqrt{3}};\sin ^{-1}\left (\frac{\sqrt{2 i x+\sqrt{3}+i}}{\sqrt{2} \sqrt [4]{3}}\right )|\frac{2 \sqrt{3}}{3 i+\sqrt{3}}\right )-3 i f \sqrt{-2 i x+\sqrt{3}-i} \left (\left (\sqrt{3}+(2-i)\right ) x-i \left (\sqrt{3}+(2+i)\right )\right ) F\left (\sin ^{-1}\left (\frac{\sqrt{2 i x+\sqrt{3}+i}}{\sqrt{2} \sqrt [4]{3}}\right )|\frac{2 \sqrt{3}}{3 i+\sqrt{3}}\right )\right )}{\left (3 i+(1+2 i) \sqrt{3}\right ) \sqrt{2 i x+\sqrt{3}+i} \sqrt{1-x^3}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(e + f*x)/((1 + Sqrt[3] - x)*Sqrt[1 - x^3]),x]

[Out]

(2*Sqrt[2/3]*Sqrt[((-I)*(-1 + x))/(3*I + Sqrt[3])]*((-3*I)*f*Sqrt[-I + Sqrt[3] - (2*I)*x]*((-I)*((2 + I) + Sqr
t[3]) + ((2 - I) + Sqrt[3])*x)*EllipticF[ArcSin[Sqrt[I + Sqrt[3] + (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(3
*I + Sqrt[3])] + 2*(Sqrt[3]*e + (3 + Sqrt[3])*f)*Sqrt[I + Sqrt[3] + (2*I)*x]*Sqrt[1 + x + x^2]*EllipticPi[(2*S
qrt[3])/(3*I + (1 + 2*I)*Sqrt[3]), ArcSin[Sqrt[I + Sqrt[3] + (2*I)*x]/(Sqrt[2]*3^(1/4))], (2*Sqrt[3])/(3*I + S
qrt[3])]))/((3*I + (1 + 2*I)*Sqrt[3])*Sqrt[I + Sqrt[3] + (2*I)*x]*Sqrt[1 - x^3])

________________________________________________________________________________________

Maple [A]  time = 0.026, size = 264, normalized size = 1.4 \begin{align*}{{\frac{2\,i}{3}}f\sqrt{3}\sqrt{i \left ( x+{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}\sqrt{{\frac{x-1}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}}\sqrt{-i \left ( x+{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}{\it EllipticF} \left ({\frac{\sqrt{3}}{3}\sqrt{i \left ( x+{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}},\sqrt{{\frac{i\sqrt{3}}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}} \right ){\frac{1}{\sqrt{-{x}^{3}+1}}}}-{\frac{{\frac{2\,i}{3}} \left ( -e-f-f\sqrt{3} \right ) \sqrt{3}}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}-\sqrt{3}}\sqrt{i \left ( x+{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}\sqrt{{\frac{x-1}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}}\sqrt{-i \left ( x+{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}{\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{i \left ( x+{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}},{\frac{i\sqrt{3}}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}-\sqrt{3}}},\sqrt{{\frac{i\sqrt{3}}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}} \right ){\frac{1}{\sqrt{-{x}^{3}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x+e)/(1-x+3^(1/2))/(-x^3+1)^(1/2),x)

[Out]

2/3*I*f*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((x-1)/(-3/2+1/2*I*3^(1/2)))^(1/2)*(-I*(x+1/2+1/2*I*3^
(1/2))*3^(1/2))^(1/2)/(-x^3+1)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),(I*3^(1/2)/
(-3/2+1/2*I*3^(1/2)))^(1/2))-2/3*I*(-e-f-f*3^(1/2))*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((x-1)/(-3
/2+1/2*I*3^(1/2)))^(1/2)*(-I*(x+1/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(-x^3+1)^(1/2)/(-3/2+1/2*I*3^(1/2)-3^(1/2))*
EllipticPi(1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),I*3^(1/2)/(-3/2+1/2*I*3^(1/2)-3^(1/2)),(I*3^(1/
2)/(-3/2+1/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{f x + e}{\sqrt{-x^{3} + 1}{\left (x - \sqrt{3} - 1\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(1-x+3^(1/2))/(-x^3+1)^(1/2),x, algorithm="maxima")

[Out]

-integrate((f*x + e)/(sqrt(-x^3 + 1)*(x - sqrt(3) - 1)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (f x^{2} +{\left (e - f\right )} x + \sqrt{3}{\left (f x + e\right )} - e\right )} \sqrt{-x^{3} + 1}}{x^{5} - 2 \, x^{4} - 2 \, x^{3} - x^{2} + 2 \, x + 2}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(1-x+3^(1/2))/(-x^3+1)^(1/2),x, algorithm="fricas")

[Out]

integral((f*x^2 + (e - f)*x + sqrt(3)*(f*x + e) - e)*sqrt(-x^3 + 1)/(x^5 - 2*x^4 - 2*x^3 - x^2 + 2*x + 2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{e}{x \sqrt{1 - x^{3}} - \sqrt{3} \sqrt{1 - x^{3}} - \sqrt{1 - x^{3}}}\, dx - \int \frac{f x}{x \sqrt{1 - x^{3}} - \sqrt{3} \sqrt{1 - x^{3}} - \sqrt{1 - x^{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(1-x+3**(1/2))/(-x**3+1)**(1/2),x)

[Out]

-Integral(e/(x*sqrt(1 - x**3) - sqrt(3)*sqrt(1 - x**3) - sqrt(1 - x**3)), x) - Integral(f*x/(x*sqrt(1 - x**3)
- sqrt(3)*sqrt(1 - x**3) - sqrt(1 - x**3)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{f x + e}{\sqrt{-x^{3} + 1}{\left (x - \sqrt{3} - 1\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x+e)/(1-x+3^(1/2))/(-x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate(-(f*x + e)/(sqrt(-x^3 + 1)*(x - sqrt(3) - 1)), x)