3.69 \(\int \frac{1}{1+x^2+x^3+x^5} \, dx\)

Optimal. Leaf size=38 \[ \frac{1}{4} \log \left (x^2+1\right )-\frac{1}{3} \log \left (x^2-x+1\right )+\frac{1}{6} \log (x+1)+\frac{1}{2} \tan ^{-1}(x) \]

[Out]

ArcTan[x]/2 + Log[1 + x]/6 + Log[1 + x^2]/4 - Log[1 - x + x^2]/3

________________________________________________________________________________________

Rubi [A]  time = 0.0249394, antiderivative size = 38, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.385, Rules used = {2058, 635, 203, 260, 628} \[ \frac{1}{4} \log \left (x^2+1\right )-\frac{1}{3} \log \left (x^2-x+1\right )+\frac{1}{6} \log (x+1)+\frac{1}{2} \tan ^{-1}(x) \]

Antiderivative was successfully verified.

[In]

Int[(1 + x^2 + x^3 + x^5)^(-1),x]

[Out]

ArcTan[x]/2 + Log[1 + x]/6 + Log[1 + x^2]/4 - Log[1 - x + x^2]/3

Rule 2058

Int[(P_)^(p_), x_Symbol] :> With[{u = Factor[P]}, Int[ExpandIntegrand[u^p, x], x] /;  !SumQ[NonfreeFactors[u,
x]]] /; PolyQ[P, x] && ILtQ[p, 0]

Rule 635

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[-(a*c)]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{1}{1+x^2+x^3+x^5} \, dx &=\int \left (\frac{1}{6 (1+x)}+\frac{1+x}{2 \left (1+x^2\right )}+\frac{1-2 x}{3 \left (1-x+x^2\right )}\right ) \, dx\\ &=\frac{1}{6} \log (1+x)+\frac{1}{3} \int \frac{1-2 x}{1-x+x^2} \, dx+\frac{1}{2} \int \frac{1+x}{1+x^2} \, dx\\ &=\frac{1}{6} \log (1+x)-\frac{1}{3} \log \left (1-x+x^2\right )+\frac{1}{2} \int \frac{1}{1+x^2} \, dx+\frac{1}{2} \int \frac{x}{1+x^2} \, dx\\ &=\frac{1}{2} \tan ^{-1}(x)+\frac{1}{6} \log (1+x)+\frac{1}{4} \log \left (1+x^2\right )-\frac{1}{3} \log \left (1-x+x^2\right )\\ \end{align*}

Mathematica [A]  time = 0.0070307, size = 38, normalized size = 1. \[ \frac{1}{4} \log \left (x^2+1\right )-\frac{1}{3} \log \left (x^2-x+1\right )+\frac{1}{6} \log (x+1)+\frac{1}{2} \tan ^{-1}(x) \]

Antiderivative was successfully verified.

[In]

Integrate[(1 + x^2 + x^3 + x^5)^(-1),x]

[Out]

ArcTan[x]/2 + Log[1 + x]/6 + Log[1 + x^2]/4 - Log[1 - x + x^2]/3

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 31, normalized size = 0.8 \begin{align*}{\frac{\arctan \left ( x \right ) }{2}}+{\frac{\ln \left ( 1+x \right ) }{6}}+{\frac{\ln \left ({x}^{2}+1 \right ) }{4}}-{\frac{\ln \left ({x}^{2}-x+1 \right ) }{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^5+x^3+x^2+1),x)

[Out]

1/2*arctan(x)+1/6*ln(1+x)+1/4*ln(x^2+1)-1/3*ln(x^2-x+1)

________________________________________________________________________________________

Maxima [A]  time = 2.70635, size = 41, normalized size = 1.08 \begin{align*} \frac{1}{2} \, \arctan \left (x\right ) - \frac{1}{3} \, \log \left (x^{2} - x + 1\right ) + \frac{1}{4} \, \log \left (x^{2} + 1\right ) + \frac{1}{6} \, \log \left (x + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^5+x^3+x^2+1),x, algorithm="maxima")

[Out]

1/2*arctan(x) - 1/3*log(x^2 - x + 1) + 1/4*log(x^2 + 1) + 1/6*log(x + 1)

________________________________________________________________________________________

Fricas [A]  time = 1.79973, size = 100, normalized size = 2.63 \begin{align*} \frac{1}{2} \, \arctan \left (x\right ) - \frac{1}{3} \, \log \left (x^{2} - x + 1\right ) + \frac{1}{4} \, \log \left (x^{2} + 1\right ) + \frac{1}{6} \, \log \left (x + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^5+x^3+x^2+1),x, algorithm="fricas")

[Out]

1/2*arctan(x) - 1/3*log(x^2 - x + 1) + 1/4*log(x^2 + 1) + 1/6*log(x + 1)

________________________________________________________________________________________

Sympy [A]  time = 0.141915, size = 29, normalized size = 0.76 \begin{align*} \frac{\log{\left (x + 1 \right )}}{6} + \frac{\log{\left (x^{2} + 1 \right )}}{4} - \frac{\log{\left (x^{2} - x + 1 \right )}}{3} + \frac{\operatorname{atan}{\left (x \right )}}{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x**5+x**3+x**2+1),x)

[Out]

log(x + 1)/6 + log(x**2 + 1)/4 - log(x**2 - x + 1)/3 + atan(x)/2

________________________________________________________________________________________

Giac [A]  time = 1.14541, size = 42, normalized size = 1.11 \begin{align*} \frac{1}{2} \, \arctan \left (x\right ) - \frac{1}{3} \, \log \left (x^{2} - x + 1\right ) + \frac{1}{4} \, \log \left (x^{2} + 1\right ) + \frac{1}{6} \, \log \left ({\left | x + 1 \right |}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^5+x^3+x^2+1),x, algorithm="giac")

[Out]

1/2*arctan(x) - 1/3*log(x^2 - x + 1) + 1/4*log(x^2 + 1) + 1/6*log(abs(x + 1))