3.367 \(\int \frac{-1+x^4+7 x^5+x^9}{-7+6 x^4+x^8} \, dx\)

Optimal. Leaf size=148 \[ \frac{x^2}{2}-\frac{\log \left (x^2-\sqrt{2} \sqrt [4]{7} x+\sqrt{7}\right )}{4 \sqrt{2} 7^{3/4}}+\frac{\log \left (x^2+\sqrt{2} \sqrt [4]{7} x+\sqrt{7}\right )}{4 \sqrt{2} 7^{3/4}}-\frac{1}{2} \tanh ^{-1}\left (x^2\right )-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} x}{\sqrt [4]{7}}\right )}{2 \sqrt{2} 7^{3/4}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} x}{\sqrt [4]{7}}+1\right )}{2 \sqrt{2} 7^{3/4}} \]

[Out]

x^2/2 - ArcTan[1 - (Sqrt[2]*x)/7^(1/4)]/(2*Sqrt[2]*7^(3/4)) + ArcTan[1 + (Sqrt[2]*x)/7^(1/4)]/(2*Sqrt[2]*7^(3/
4)) - ArcTanh[x^2]/2 - Log[Sqrt[7] - Sqrt[2]*7^(1/4)*x + x^2]/(4*Sqrt[2]*7^(3/4)) + Log[Sqrt[7] + Sqrt[2]*7^(1
/4)*x + x^2]/(4*Sqrt[2]*7^(3/4))

________________________________________________________________________________________

Rubi [A]  time = 0.135981, antiderivative size = 148, normalized size of antiderivative = 1., number of steps used = 17, number of rules used = 13, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {1790, 1403, 211, 1165, 628, 1162, 617, 204, 1584, 1478, 275, 321, 207} \[ \frac{x^2}{2}-\frac{\log \left (x^2-\sqrt{2} \sqrt [4]{7} x+\sqrt{7}\right )}{4 \sqrt{2} 7^{3/4}}+\frac{\log \left (x^2+\sqrt{2} \sqrt [4]{7} x+\sqrt{7}\right )}{4 \sqrt{2} 7^{3/4}}-\frac{1}{2} \tanh ^{-1}\left (x^2\right )-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} x}{\sqrt [4]{7}}\right )}{2 \sqrt{2} 7^{3/4}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} x}{\sqrt [4]{7}}+1\right )}{2 \sqrt{2} 7^{3/4}} \]

Antiderivative was successfully verified.

[In]

Int[(-1 + x^4 + 7*x^5 + x^9)/(-7 + 6*x^4 + x^8),x]

[Out]

x^2/2 - ArcTan[1 - (Sqrt[2]*x)/7^(1/4)]/(2*Sqrt[2]*7^(3/4)) + ArcTan[1 + (Sqrt[2]*x)/7^(1/4)]/(2*Sqrt[2]*7^(3/
4)) - ArcTanh[x^2]/2 - Log[Sqrt[7] - Sqrt[2]*7^(1/4)*x + x^2]/(4*Sqrt[2]*7^(3/4)) + Log[Sqrt[7] + Sqrt[2]*7^(1
/4)*x + x^2]/(4*Sqrt[2]*7^(3/4))

Rule 1790

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], j, k}, Int[
Sum[x^j*Sum[Coeff[Pq, x, j + k*n]*x^(k*n), {k, 0, (q - j)/n + 1}]*(a + b*x^n + c*x^(2*n))^p, {j, 0, n - 1}], x
]] /; FreeQ[{a, b, c, p}, x] && EqQ[n2, 2*n] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] &&  !PolyQ[P
q, x^n]

Rule 1403

Int[((d_) + (e_.)*(x_)^(n_))^(q_.)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_.), x_Symbol] :> Int[(d + e*
x^n)^(p + q)*(a/d + (c*x^n)/e)^p, x] /; FreeQ[{a, b, c, d, e, n, q}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]
 && EqQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[p]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1584

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(m + n*p)*(a + b*x^(q -
 p))^n, x] /; FreeQ[{a, b, m, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 1478

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))^(q_.)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_.), x_Sym
bol] :> Int[(f*x)^m*(d + e*x^n)^(q + p)*(a/d + (c*x^n)/e)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, q}, x] && Eq
Q[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[p]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{-1+x^4+7 x^5+x^9}{-7+6 x^4+x^8} \, dx &=\int \left (\frac{-1+x^4}{-7+6 x^4+x^8}+\frac{x \left (7 x^4+x^8\right )}{-7+6 x^4+x^8}\right ) \, dx\\ &=\int \frac{-1+x^4}{-7+6 x^4+x^8} \, dx+\int \frac{x \left (7 x^4+x^8\right )}{-7+6 x^4+x^8} \, dx\\ &=\int \frac{1}{7+x^4} \, dx+\int \frac{x^5 \left (7+x^4\right )}{-7+6 x^4+x^8} \, dx\\ &=\frac{\int \frac{\sqrt{7}-x^2}{7+x^4} \, dx}{2 \sqrt{7}}+\frac{\int \frac{\sqrt{7}+x^2}{7+x^4} \, dx}{2 \sqrt{7}}+\int \frac{x^5}{-1+x^4} \, dx\\ &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{x^2}{-1+x^2} \, dx,x,x^2\right )-\frac{\int \frac{\sqrt{2} \sqrt [4]{7}+2 x}{-\sqrt{7}-\sqrt{2} \sqrt [4]{7} x-x^2} \, dx}{4 \sqrt{2} 7^{3/4}}-\frac{\int \frac{\sqrt{2} \sqrt [4]{7}-2 x}{-\sqrt{7}+\sqrt{2} \sqrt [4]{7} x-x^2} \, dx}{4 \sqrt{2} 7^{3/4}}+\frac{\int \frac{1}{\sqrt{7}-\sqrt{2} \sqrt [4]{7} x+x^2} \, dx}{4 \sqrt{7}}+\frac{\int \frac{1}{\sqrt{7}+\sqrt{2} \sqrt [4]{7} x+x^2} \, dx}{4 \sqrt{7}}\\ &=\frac{x^2}{2}-\frac{\log \left (\sqrt{7}-\sqrt{2} \sqrt [4]{7} x+x^2\right )}{4 \sqrt{2} 7^{3/4}}+\frac{\log \left (\sqrt{7}+\sqrt{2} \sqrt [4]{7} x+x^2\right )}{4 \sqrt{2} 7^{3/4}}+\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{-1+x^2} \, dx,x,x^2\right )+\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} x}{\sqrt [4]{7}}\right )}{2 \sqrt{2} 7^{3/4}}-\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} x}{\sqrt [4]{7}}\right )}{2 \sqrt{2} 7^{3/4}}\\ &=\frac{x^2}{2}-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} x}{\sqrt [4]{7}}\right )}{2 \sqrt{2} 7^{3/4}}+\frac{\tan ^{-1}\left (1+\frac{\sqrt{2} x}{\sqrt [4]{7}}\right )}{2 \sqrt{2} 7^{3/4}}-\frac{1}{2} \tanh ^{-1}\left (x^2\right )-\frac{\log \left (\sqrt{7}-\sqrt{2} \sqrt [4]{7} x+x^2\right )}{4 \sqrt{2} 7^{3/4}}+\frac{\log \left (\sqrt{7}+\sqrt{2} \sqrt [4]{7} x+x^2\right )}{4 \sqrt{2} 7^{3/4}}\\ \end{align*}

Mathematica [A]  time = 0.0685093, size = 159, normalized size = 1.07 \[ \frac{1}{56} \left (28 x^2-14 \log \left (x^2+1\right )-\sqrt{2} \sqrt [4]{7} \log \left (\sqrt{7} x^2-\sqrt{2} 7^{3/4} x+7\right )+\sqrt{2} \sqrt [4]{7} \log \left (\sqrt{7} x^2+\sqrt{2} 7^{3/4} x+7\right )+14 \log (1-x)+14 \log (x+1)-2 \sqrt{2} \sqrt [4]{7} \tan ^{-1}\left (1-\frac{\sqrt{2} x}{\sqrt [4]{7}}\right )+2 \sqrt{2} \sqrt [4]{7} \tan ^{-1}\left (\frac{\sqrt{2} x}{\sqrt [4]{7}}+1\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(-1 + x^4 + 7*x^5 + x^9)/(-7 + 6*x^4 + x^8),x]

[Out]

(28*x^2 - 2*Sqrt[2]*7^(1/4)*ArcTan[1 - (Sqrt[2]*x)/7^(1/4)] + 2*Sqrt[2]*7^(1/4)*ArcTan[1 + (Sqrt[2]*x)/7^(1/4)
] + 14*Log[1 - x] + 14*Log[1 + x] - 14*Log[1 + x^2] - Sqrt[2]*7^(1/4)*Log[7 - Sqrt[2]*7^(3/4)*x + Sqrt[7]*x^2]
 + Sqrt[2]*7^(1/4)*Log[7 + Sqrt[2]*7^(3/4)*x + Sqrt[7]*x^2])/56

________________________________________________________________________________________

Maple [A]  time = 0.012, size = 110, normalized size = 0.7 \begin{align*}{\frac{{x}^{2}}{2}}-{\frac{\ln \left ({x}^{2}+1 \right ) }{4}}+{\frac{\ln \left ( x-1 \right ) }{4}}+{\frac{\sqrt [4]{7}\sqrt{2}}{28}\arctan \left ( -1+{\frac{x\sqrt{2}{7}^{{\frac{3}{4}}}}{7}} \right ) }+{\frac{\sqrt [4]{7}\sqrt{2}}{56}\ln \left ({\frac{{x}^{2}+\sqrt [4]{7}x\sqrt{2}+\sqrt{7}}{{x}^{2}-\sqrt [4]{7}x\sqrt{2}+\sqrt{7}}} \right ) }+{\frac{\sqrt [4]{7}\sqrt{2}}{28}\arctan \left ( 1+{\frac{x\sqrt{2}{7}^{{\frac{3}{4}}}}{7}} \right ) }+{\frac{\ln \left ( 1+x \right ) }{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^9+7*x^5+x^4-1)/(x^8+6*x^4-7),x)

[Out]

1/2*x^2-1/4*ln(x^2+1)+1/4*ln(x-1)+1/28*arctan(-1+1/7*x*2^(1/2)*7^(3/4))*7^(1/4)*2^(1/2)+1/56*7^(1/4)*2^(1/2)*l
n((x^2+7^(1/4)*x*2^(1/2)+7^(1/2))/(x^2-7^(1/4)*x*2^(1/2)+7^(1/2)))+1/28*arctan(1+1/7*x*2^(1/2)*7^(3/4))*7^(1/4
)*2^(1/2)+1/4*ln(1+x)

________________________________________________________________________________________

Maxima [A]  time = 1.68216, size = 178, normalized size = 1.2 \begin{align*} \frac{1}{2} \, x^{2} + \frac{1}{28} \cdot 7^{\frac{1}{4}} \sqrt{2} \arctan \left (\frac{1}{14} \cdot 7^{\frac{3}{4}} \sqrt{2}{\left (2 \, x + 7^{\frac{1}{4}} \sqrt{2}\right )}\right ) + \frac{1}{28} \cdot 7^{\frac{1}{4}} \sqrt{2} \arctan \left (\frac{1}{14} \cdot 7^{\frac{3}{4}} \sqrt{2}{\left (2 \, x - 7^{\frac{1}{4}} \sqrt{2}\right )}\right ) + \frac{1}{56} \cdot 7^{\frac{1}{4}} \sqrt{2} \log \left (x^{2} + 7^{\frac{1}{4}} \sqrt{2} x + \sqrt{7}\right ) - \frac{1}{56} \cdot 7^{\frac{1}{4}} \sqrt{2} \log \left (x^{2} - 7^{\frac{1}{4}} \sqrt{2} x + \sqrt{7}\right ) - \frac{1}{4} \, \log \left (x^{2} + 1\right ) + \frac{1}{4} \, \log \left (x + 1\right ) + \frac{1}{4} \, \log \left (x - 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^9+7*x^5+x^4-1)/(x^8+6*x^4-7),x, algorithm="maxima")

[Out]

1/2*x^2 + 1/28*7^(1/4)*sqrt(2)*arctan(1/14*7^(3/4)*sqrt(2)*(2*x + 7^(1/4)*sqrt(2))) + 1/28*7^(1/4)*sqrt(2)*arc
tan(1/14*7^(3/4)*sqrt(2)*(2*x - 7^(1/4)*sqrt(2))) + 1/56*7^(1/4)*sqrt(2)*log(x^2 + 7^(1/4)*sqrt(2)*x + sqrt(7)
) - 1/56*7^(1/4)*sqrt(2)*log(x^2 - 7^(1/4)*sqrt(2)*x + sqrt(7)) - 1/4*log(x^2 + 1) + 1/4*log(x + 1) + 1/4*log(
x - 1)

________________________________________________________________________________________

Fricas [A]  time = 1.58688, size = 635, normalized size = 4.29 \begin{align*} -\frac{1}{686} \cdot 343^{\frac{3}{4}} \sqrt{2} \arctan \left (-\frac{1}{7} \cdot 343^{\frac{1}{4}} \sqrt{2} x + \frac{1}{49} \cdot 343^{\frac{1}{4}} \sqrt{2} \sqrt{343^{\frac{3}{4}} \sqrt{2} x + 49 \, x^{2} + 49 \, \sqrt{7}} - 1\right ) - \frac{1}{686} \cdot 343^{\frac{3}{4}} \sqrt{2} \arctan \left (-\frac{1}{7} \cdot 343^{\frac{1}{4}} \sqrt{2} x + \frac{1}{49} \cdot 343^{\frac{1}{4}} \sqrt{2} \sqrt{-343^{\frac{3}{4}} \sqrt{2} x + 49 \, x^{2} + 49 \, \sqrt{7}} + 1\right ) + \frac{1}{2744} \cdot 343^{\frac{3}{4}} \sqrt{2} \log \left (343^{\frac{3}{4}} \sqrt{2} x + 49 \, x^{2} + 49 \, \sqrt{7}\right ) - \frac{1}{2744} \cdot 343^{\frac{3}{4}} \sqrt{2} \log \left (-343^{\frac{3}{4}} \sqrt{2} x + 49 \, x^{2} + 49 \, \sqrt{7}\right ) + \frac{1}{2} \, x^{2} - \frac{1}{4} \, \log \left (x^{2} + 1\right ) + \frac{1}{4} \, \log \left (x^{2} - 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^9+7*x^5+x^4-1)/(x^8+6*x^4-7),x, algorithm="fricas")

[Out]

-1/686*343^(3/4)*sqrt(2)*arctan(-1/7*343^(1/4)*sqrt(2)*x + 1/49*343^(1/4)*sqrt(2)*sqrt(343^(3/4)*sqrt(2)*x + 4
9*x^2 + 49*sqrt(7)) - 1) - 1/686*343^(3/4)*sqrt(2)*arctan(-1/7*343^(1/4)*sqrt(2)*x + 1/49*343^(1/4)*sqrt(2)*sq
rt(-343^(3/4)*sqrt(2)*x + 49*x^2 + 49*sqrt(7)) + 1) + 1/2744*343^(3/4)*sqrt(2)*log(343^(3/4)*sqrt(2)*x + 49*x^
2 + 49*sqrt(7)) - 1/2744*343^(3/4)*sqrt(2)*log(-343^(3/4)*sqrt(2)*x + 49*x^2 + 49*sqrt(7)) + 1/2*x^2 - 1/4*log
(x^2 + 1) + 1/4*log(x^2 - 1)

________________________________________________________________________________________

Sympy [A]  time = 0.420059, size = 146, normalized size = 0.99 \begin{align*} \frac{x^{2}}{2} + \frac{\log{\left (x^{2} - 1 \right )}}{4} - \frac{\log{\left (x^{2} + 1 \right )}}{4} - \frac{\sqrt{2} \sqrt [4]{7} \log{\left (x^{2} - \sqrt{2} \sqrt [4]{7} x + \sqrt{7} \right )}}{56} + \frac{\sqrt{2} \sqrt [4]{7} \log{\left (x^{2} + \sqrt{2} \sqrt [4]{7} x + \sqrt{7} \right )}}{56} + \frac{\sqrt{2} \sqrt [4]{7} \operatorname{atan}{\left (\frac{\sqrt{2} \cdot 7^{\frac{3}{4}} x}{7} - 1 \right )}}{28} + \frac{\sqrt{2} \sqrt [4]{7} \operatorname{atan}{\left (\frac{\sqrt{2} \cdot 7^{\frac{3}{4}} x}{7} + 1 \right )}}{28} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**9+7*x**5+x**4-1)/(x**8+6*x**4-7),x)

[Out]

x**2/2 + log(x**2 - 1)/4 - log(x**2 + 1)/4 - sqrt(2)*7**(1/4)*log(x**2 - sqrt(2)*7**(1/4)*x + sqrt(7))/56 + sq
rt(2)*7**(1/4)*log(x**2 + sqrt(2)*7**(1/4)*x + sqrt(7))/56 + sqrt(2)*7**(1/4)*atan(sqrt(2)*7**(3/4)*x/7 - 1)/2
8 + sqrt(2)*7**(1/4)*atan(sqrt(2)*7**(3/4)*x/7 + 1)/28

________________________________________________________________________________________

Giac [A]  time = 1.33989, size = 165, normalized size = 1.11 \begin{align*} \frac{1}{2} \, x^{2} + \frac{1}{28} \cdot 28^{\frac{1}{4}} \arctan \left (\frac{1}{14} \cdot 7^{\frac{3}{4}} \sqrt{2}{\left (2 \, x + 7^{\frac{1}{4}} \sqrt{2}\right )}\right ) + \frac{1}{28} \cdot 28^{\frac{1}{4}} \arctan \left (\frac{1}{14} \cdot 7^{\frac{3}{4}} \sqrt{2}{\left (2 \, x - 7^{\frac{1}{4}} \sqrt{2}\right )}\right ) + \frac{1}{56} \cdot 28^{\frac{1}{4}} \log \left (x^{2} + 7^{\frac{1}{4}} \sqrt{2} x + \sqrt{7}\right ) - \frac{1}{56} \cdot 28^{\frac{1}{4}} \log \left (x^{2} - 7^{\frac{1}{4}} \sqrt{2} x + \sqrt{7}\right ) - \frac{1}{4} \, \log \left (x^{2} + 1\right ) + \frac{1}{4} \, \log \left ({\left | x + 1 \right |}\right ) + \frac{1}{4} \, \log \left ({\left | x - 1 \right |}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^9+7*x^5+x^4-1)/(x^8+6*x^4-7),x, algorithm="giac")

[Out]

1/2*x^2 + 1/28*28^(1/4)*arctan(1/14*7^(3/4)*sqrt(2)*(2*x + 7^(1/4)*sqrt(2))) + 1/28*28^(1/4)*arctan(1/14*7^(3/
4)*sqrt(2)*(2*x - 7^(1/4)*sqrt(2))) + 1/56*28^(1/4)*log(x^2 + 7^(1/4)*sqrt(2)*x + sqrt(7)) - 1/56*28^(1/4)*log
(x^2 - 7^(1/4)*sqrt(2)*x + sqrt(7)) - 1/4*log(x^2 + 1) + 1/4*log(abs(x + 1)) + 1/4*log(abs(x - 1))