3.287 \(\int \frac{1+2 x+x^2+x^3}{1+2 x^2+x^4} \, dx\)

Optimal. Leaf size=24 \[ -\frac{1}{2 \left (x^2+1\right )}+\frac{1}{2} \log \left (x^2+1\right )+\tan ^{-1}(x) \]

[Out]

-1/(2*(1 + x^2)) + ArcTan[x] + Log[1 + x^2]/2

________________________________________________________________________________________

Rubi [A]  time = 0.0159376, antiderivative size = 24, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208, Rules used = {28, 1814, 635, 203, 260} \[ -\frac{1}{2 \left (x^2+1\right )}+\frac{1}{2} \log \left (x^2+1\right )+\tan ^{-1}(x) \]

Antiderivative was successfully verified.

[In]

Int[(1 + 2*x + x^2 + x^3)/(1 + 2*x^2 + x^4),x]

[Out]

-1/(2*(1 + x^2)) + ArcTan[x] + Log[1 + x^2]/2

Rule 28

Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/c^p, Int[u*(b/2 + c*x^n)^(2*
p), x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 1814

Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, a + b*x^2, x], f = Coeff[P
olynomialRemainder[Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 1]}, Simp[((a
*g - b*f*x)*(a + b*x^2)^(p + 1))/(2*a*b*(p + 1)), x] + Dist[1/(2*a*(p + 1)), Int[(a + b*x^2)^(p + 1)*ExpandToS
um[2*a*(p + 1)*Q + f*(2*p + 3), x], x], x]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && LtQ[p, -1]

Rule 635

Int[((d_) + (e_.)*(x_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[d, Int[1/(a + c*x^2), x], x] + Dist[e, Int[x/
(a + c*x^2), x], x] /; FreeQ[{a, c, d, e}, x] &&  !NiceSqrtQ[-(a*c)]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rubi steps

\begin{align*} \int \frac{1+2 x+x^2+x^3}{1+2 x^2+x^4} \, dx &=\int \frac{1+2 x+x^2+x^3}{\left (1+x^2\right )^2} \, dx\\ &=-\frac{1}{2 \left (1+x^2\right )}-\frac{1}{2} \int \frac{-2-2 x}{1+x^2} \, dx\\ &=-\frac{1}{2 \left (1+x^2\right )}+\int \frac{1}{1+x^2} \, dx+\int \frac{x}{1+x^2} \, dx\\ &=-\frac{1}{2 \left (1+x^2\right )}+\tan ^{-1}(x)+\frac{1}{2} \log \left (1+x^2\right )\\ \end{align*}

Mathematica [A]  time = 0.0097642, size = 24, normalized size = 1. \[ -\frac{1}{2 \left (x^2+1\right )}+\frac{1}{2} \log \left (x^2+1\right )+\tan ^{-1}(x) \]

Antiderivative was successfully verified.

[In]

Integrate[(1 + 2*x + x^2 + x^3)/(1 + 2*x^2 + x^4),x]

[Out]

-1/(2*(1 + x^2)) + ArcTan[x] + Log[1 + x^2]/2

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 21, normalized size = 0.9 \begin{align*} -{\frac{1}{2\,{x}^{2}+2}}+\arctan \left ( x \right ) +{\frac{\ln \left ({x}^{2}+1 \right ) }{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3+x^2+2*x+1)/(x^4+2*x^2+1),x)

[Out]

-1/2/(x^2+1)+arctan(x)+1/2*ln(x^2+1)

________________________________________________________________________________________

Maxima [A]  time = 1.5107, size = 27, normalized size = 1.12 \begin{align*} -\frac{1}{2 \,{\left (x^{2} + 1\right )}} + \arctan \left (x\right ) + \frac{1}{2} \, \log \left (x^{2} + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^3+x^2+2*x+1)/(x^4+2*x^2+1),x, algorithm="maxima")

[Out]

-1/2/(x^2 + 1) + arctan(x) + 1/2*log(x^2 + 1)

________________________________________________________________________________________

Fricas [A]  time = 1.59358, size = 92, normalized size = 3.83 \begin{align*} \frac{2 \,{\left (x^{2} + 1\right )} \arctan \left (x\right ) +{\left (x^{2} + 1\right )} \log \left (x^{2} + 1\right ) - 1}{2 \,{\left (x^{2} + 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^3+x^2+2*x+1)/(x^4+2*x^2+1),x, algorithm="fricas")

[Out]

1/2*(2*(x^2 + 1)*arctan(x) + (x^2 + 1)*log(x^2 + 1) - 1)/(x^2 + 1)

________________________________________________________________________________________

Sympy [A]  time = 0.111997, size = 19, normalized size = 0.79 \begin{align*} \frac{\log{\left (x^{2} + 1 \right )}}{2} + \operatorname{atan}{\left (x \right )} - \frac{1}{2 x^{2} + 2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**3+x**2+2*x+1)/(x**4+2*x**2+1),x)

[Out]

log(x**2 + 1)/2 + atan(x) - 1/(2*x**2 + 2)

________________________________________________________________________________________

Giac [A]  time = 1.13662, size = 27, normalized size = 1.12 \begin{align*} -\frac{1}{2 \,{\left (x^{2} + 1\right )}} + \arctan \left (x\right ) + \frac{1}{2} \, \log \left (x^{2} + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^3+x^2+2*x+1)/(x^4+2*x^2+1),x, algorithm="giac")

[Out]

-1/2/(x^2 + 1) + arctan(x) + 1/2*log(x^2 + 1)