3.217 \(\int (b x+c x^2) (1+(\frac{b x^2}{2}+\frac{c x^3}{3})^n) \, dx\)

Optimal. Leaf size=44 \[ \frac{\left (\frac{b x^2}{2}+\frac{c x^3}{3}\right )^{n+1}}{n+1}+\frac{b x^2}{2}+\frac{c x^3}{3} \]

[Out]

(b*x^2)/2 + (c*x^3)/3 + ((b*x^2)/2 + (c*x^3)/3)^(1 + n)/(1 + n)

________________________________________________________________________________________

Rubi [A]  time = 0.0095982, antiderivative size = 44, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 1, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.032, Rules used = {1591} \[ \frac{\left (\frac{b x^2}{2}+\frac{c x^3}{3}\right )^{n+1}}{n+1}+\frac{b x^2}{2}+\frac{c x^3}{3} \]

Antiderivative was successfully verified.

[In]

Int[(b*x + c*x^2)*(1 + ((b*x^2)/2 + (c*x^3)/3)^n),x]

[Out]

(b*x^2)/2 + (c*x^3)/3 + ((b*x^2)/2 + (c*x^3)/3)^(1 + n)/(1 + n)

Rule 1591

Int[((a_.) + (b_.)*(Pq_)^(n_.))^(p_.)*(Qr_), x_Symbol] :> With[{q = Expon[Pq, x], r = Expon[Qr, x]}, Dist[Coef
f[Qr, x, r]/(q*Coeff[Pq, x, q]), Subst[Int[(a + b*x^n)^p, x], x, Pq], x] /; EqQ[r, q - 1] && EqQ[Coeff[Qr, x,
r]*D[Pq, x], q*Coeff[Pq, x, q]*Qr]] /; FreeQ[{a, b, n, p}, x] && PolyQ[Pq, x] && PolyQ[Qr, x]

Rubi steps

\begin{align*} \int \left (b x+c x^2\right ) \left (1+\left (\frac{b x^2}{2}+\frac{c x^3}{3}\right )^n\right ) \, dx &=\operatorname{Subst}\left (\int \left (1+x^n\right ) \, dx,x,\frac{b x^2}{2}+\frac{c x^3}{3}\right )\\ &=\frac{b x^2}{2}+\frac{c x^3}{3}+\frac{\left (\frac{b x^2}{2}+\frac{c x^3}{3}\right )^{1+n}}{1+n}\\ \end{align*}

Mathematica [A]  time = 0.0828407, size = 42, normalized size = 0.95 \[ \frac{x^2 (3 b+2 c x) \left (\left (\frac{b x^2}{2}+\frac{c x^3}{3}\right )^n+n+1\right )}{6 (n+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[(b*x + c*x^2)*(1 + ((b*x^2)/2 + (c*x^3)/3)^n),x]

[Out]

(x^2*(3*b + 2*c*x)*(1 + n + ((b*x^2)/2 + (c*x^3)/3)^n))/(6*(1 + n))

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 37, normalized size = 0.8 \begin{align*}{\frac{b{x}^{2}}{2}}+{\frac{c{x}^{3}}{3}}+{\frac{1}{1+n} \left ({\frac{b{x}^{2}}{2}}+{\frac{c{x}^{3}}{3}} \right ) ^{1+n}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x)*(1+(1/2*b*x^2+1/3*c*x^3)^n),x)

[Out]

1/2*b*x^2+1/3*c*x^3+(1/2*b*x^2+1/3*c*x^3)^(1+n)/(1+n)

________________________________________________________________________________________

Maxima [A]  time = 1.70073, size = 96, normalized size = 2.18 \begin{align*} \frac{1}{3} \, c x^{3} + \frac{1}{2} \, b x^{2} + \frac{{\left (2 \, c x^{3} + 3 \, b x^{2}\right )} e^{\left (n \log \left (2 \, c x + 3 \, b\right ) + 2 \, n \log \left (x\right )\right )}}{3^{n + 1} 2^{n + 1} n + 3^{n + 1} 2^{n + 1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)*(1+(1/2*b*x^2+1/3*c*x^3)^n),x, algorithm="maxima")

[Out]

1/3*c*x^3 + 1/2*b*x^2 + (2*c*x^3 + 3*b*x^2)*e^(n*log(2*c*x + 3*b) + 2*n*log(x))/(3^(n + 1)*2^(n + 1)*n + 3^(n
+ 1)*2^(n + 1))

________________________________________________________________________________________

Fricas [A]  time = 1.39462, size = 131, normalized size = 2.98 \begin{align*} \frac{2 \,{\left (c n + c\right )} x^{3} + 3 \,{\left (b n + b\right )} x^{2} +{\left (2 \, c x^{3} + 3 \, b x^{2}\right )}{\left (\frac{1}{3} \, c x^{3} + \frac{1}{2} \, b x^{2}\right )}^{n}}{6 \,{\left (n + 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)*(1+(1/2*b*x^2+1/3*c*x^3)^n),x, algorithm="fricas")

[Out]

1/6*(2*(c*n + c)*x^3 + 3*(b*n + b)*x^2 + (2*c*x^3 + 3*b*x^2)*(1/3*c*x^3 + 1/2*b*x^2)^n)/(n + 1)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x)*(1+(1/2*b*x**2+1/3*c*x**3)**n),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.14951, size = 49, normalized size = 1.11 \begin{align*} \frac{1}{3} \, c x^{3} + \frac{1}{2} \, b x^{2} + \frac{{\left (\frac{1}{3} \, c x^{3} + \frac{1}{2} \, b x^{2}\right )}^{n + 1}}{n + 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)*(1+(1/2*b*x^2+1/3*c*x^3)^n),x, algorithm="giac")

[Out]

1/3*c*x^3 + 1/2*b*x^2 + (1/3*c*x^3 + 1/2*b*x^2)^(n + 1)/(n + 1)