3.189 \(\int x^{2 n} (c+d x)^n (2 c x+3 d x^2) \, dx\)

Optimal. Leaf size=22 \[ \frac{x^{2 (n+1)} (c+d x)^{n+1}}{n+1} \]

[Out]

(x^(2*(1 + n))*(c + d*x)^(1 + n))/(1 + n)

________________________________________________________________________________________

Rubi [A]  time = 0.009202, antiderivative size = 22, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.042, Rules used = {845} \[ \frac{x^{2 (n+1)} (c+d x)^{n+1}}{n+1} \]

Antiderivative was successfully verified.

[In]

Int[x^(2*n)*(c + d*x)^n*(2*c*x + 3*d*x^2),x]

[Out]

(x^(2*(1 + n))*(c + d*x)^(1 + n))/(1 + n)

Rule 845

Int[(x_)^(m_.)*((f_) + (g_.)*(x_))^(n_.)*((b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(c*x^(m + 2)*(f + g*x)
^(n + 1))/(g*(m + n + 3)), x] /; FreeQ[{b, c, f, g, m, n}, x] && EqQ[c*f*(m + 2) - b*g*(m + n + 3), 0] && NeQ[
m + n + 3, 0]

Rubi steps

\begin{align*} \int x^{2 n} (c+d x)^n \left (2 c x+3 d x^2\right ) \, dx &=\frac{x^{2 (1+n)} (c+d x)^{1+n}}{1+n}\\ \end{align*}

Mathematica [A]  time = 0.0103197, size = 22, normalized size = 1. \[ \frac{x^{2 n+2} (c+d x)^{n+1}}{n+1} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(2*n)*(c + d*x)^n*(2*c*x + 3*d*x^2),x]

[Out]

(x^(2 + 2*n)*(c + d*x)^(1 + n))/(1 + n)

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 23, normalized size = 1.1 \begin{align*}{\frac{{x}^{2+2\,n} \left ( dx+c \right ) ^{1+n}}{1+n}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(2*n)*(d*x+c)^n*(3*d*x^2+2*c*x),x)

[Out]

x^(2+2*n)*(d*x+c)^(1+n)/(1+n)

________________________________________________________________________________________

Maxima [A]  time = 1.16639, size = 43, normalized size = 1.95 \begin{align*} \frac{{\left (d x^{3} + c x^{2}\right )} e^{\left (n \log \left (d x + c\right ) + 2 \, n \log \left (x\right )\right )}}{n + 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(2*n)*(d*x+c)^n*(3*d*x^2+2*c*x),x, algorithm="maxima")

[Out]

(d*x^3 + c*x^2)*e^(n*log(d*x + c) + 2*n*log(x))/(n + 1)

________________________________________________________________________________________

Fricas [A]  time = 1.4309, size = 61, normalized size = 2.77 \begin{align*} \frac{{\left (d x^{3} + c x^{2}\right )}{\left (d x + c\right )}^{n} x^{2 \, n}}{n + 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(2*n)*(d*x+c)^n*(3*d*x^2+2*c*x),x, algorithm="fricas")

[Out]

(d*x^3 + c*x^2)*(d*x + c)^n*x^(2*n)/(n + 1)

________________________________________________________________________________________

Sympy [A]  time = 5.10322, size = 53, normalized size = 2.41 \begin{align*} \begin{cases} \frac{c x^{2} x^{2 n} \left (c + d x\right )^{n}}{n + 1} + \frac{d x^{3} x^{2 n} \left (c + d x\right )^{n}}{n + 1} & \text{for}\: n \neq -1 \\2 \log{\left (x \right )} + \log{\left (\frac{c}{d} + x \right )} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(2*n)*(d*x+c)**n*(3*d*x**2+2*c*x),x)

[Out]

Piecewise((c*x**2*x**(2*n)*(c + d*x)**n/(n + 1) + d*x**3*x**(2*n)*(c + d*x)**n/(n + 1), Ne(n, -1)), (2*log(x)
+ log(c/d + x), True))

________________________________________________________________________________________

Giac [A]  time = 1.15633, size = 55, normalized size = 2.5 \begin{align*} \frac{{\left (d x + c\right )}^{n} d x^{3} x^{2 \, n} +{\left (d x + c\right )}^{n} c x^{2} x^{2 \, n}}{n + 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(2*n)*(d*x+c)^n*(3*d*x^2+2*c*x),x, algorithm="giac")

[Out]

((d*x + c)^n*d*x^3*x^(2*n) + (d*x + c)^n*c*x^2*x^(2*n))/(n + 1)