3.180 \(\int (b+2 c x+3 d x^2) (a+b x+c x^2+d x^3)^n \, dx\)

Optimal. Leaf size=25 \[ \frac{\left (a+b x+c x^2+d x^3\right )^{n+1}}{n+1} \]

[Out]

(a + b*x + c*x^2 + d*x^3)^(1 + n)/(1 + n)

________________________________________________________________________________________

Rubi [A]  time = 0.0239676, antiderivative size = 25, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.033, Rules used = {1588} \[ \frac{\left (a+b x+c x^2+d x^3\right )^{n+1}}{n+1} \]

Antiderivative was successfully verified.

[In]

Int[(b + 2*c*x + 3*d*x^2)*(a + b*x + c*x^2 + d*x^3)^n,x]

[Out]

(a + b*x + c*x^2 + d*x^3)^(1 + n)/(1 + n)

Rule 1588

Int[(Pp_)*(Qq_)^(m_.), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x]}, Simp[(Coeff[Pp, x, p]*x^(p - q
+ 1)*Qq^(m + 1))/((p + m*q + 1)*Coeff[Qq, x, q]), x] /; NeQ[p + m*q + 1, 0] && EqQ[(p + m*q + 1)*Coeff[Qq, x,
q]*Pp, Coeff[Pp, x, p]*x^(p - q)*((p - q + 1)*Qq + (m + 1)*x*D[Qq, x])]] /; FreeQ[m, x] && PolyQ[Pp, x] && Pol
yQ[Qq, x] && NeQ[m, -1]

Rubi steps

\begin{align*} \int \left (b+2 c x+3 d x^2\right ) \left (a+b x+c x^2+d x^3\right )^n \, dx &=\frac{\left (a+b x+c x^2+d x^3\right )^{1+n}}{1+n}\\ \end{align*}

Mathematica [A]  time = 0.0143151, size = 23, normalized size = 0.92 \[ \frac{(a+x (b+x (c+d x)))^{n+1}}{n+1} \]

Antiderivative was successfully verified.

[In]

Integrate[(b + 2*c*x + 3*d*x^2)*(a + b*x + c*x^2 + d*x^3)^n,x]

[Out]

(a + x*(b + x*(c + d*x)))^(1 + n)/(1 + n)

________________________________________________________________________________________

Maple [A]  time = 0.004, size = 26, normalized size = 1. \begin{align*}{\frac{ \left ( d{x}^{3}+c{x}^{2}+bx+a \right ) ^{1+n}}{1+n}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*d*x^2+2*c*x+b)*(d*x^3+c*x^2+b*x+a)^n,x)

[Out]

(d*x^3+c*x^2+b*x+a)^(1+n)/(1+n)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*d*x^2+2*c*x+b)*(d*x^3+c*x^2+b*x+a)^n,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.39835, size = 85, normalized size = 3.4 \begin{align*} \frac{{\left (d x^{3} + c x^{2} + b x + a\right )}{\left (d x^{3} + c x^{2} + b x + a\right )}^{n}}{n + 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*d*x^2+2*c*x+b)*(d*x^3+c*x^2+b*x+a)^n,x, algorithm="fricas")

[Out]

(d*x^3 + c*x^2 + b*x + a)*(d*x^3 + c*x^2 + b*x + a)^n/(n + 1)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*d*x**2+2*c*x+b)*(d*x**3+c*x**2+b*x+a)**n,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.29716, size = 122, normalized size = 4.88 \begin{align*} \frac{{\left (d x^{3} + c x^{2} + b x + a\right )}^{n} d x^{3} +{\left (d x^{3} + c x^{2} + b x + a\right )}^{n} c x^{2} +{\left (d x^{3} + c x^{2} + b x + a\right )}^{n} b x +{\left (d x^{3} + c x^{2} + b x + a\right )}^{n} a}{n + 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*d*x^2+2*c*x+b)*(d*x^3+c*x^2+b*x+a)^n,x, algorithm="giac")

[Out]

((d*x^3 + c*x^2 + b*x + a)^n*d*x^3 + (d*x^3 + c*x^2 + b*x + a)^n*c*x^2 + (d*x^3 + c*x^2 + b*x + a)^n*b*x + (d*
x^3 + c*x^2 + b*x + a)^n*a)/(n + 1)