3.99 \(\int \frac{-5+2 x^2}{6-5 x^2+x^4} \, dx\)

Optimal. Leaf size=31 \[ -\frac{\tanh ^{-1}\left (\frac{x}{\sqrt{2}}\right )}{\sqrt{2}}-\frac{\tanh ^{-1}\left (\frac{x}{\sqrt{3}}\right )}{\sqrt{3}} \]

[Out]

-(ArcTanh[x/Sqrt[2]]/Sqrt[2]) - ArcTanh[x/Sqrt[3]]/Sqrt[3]

________________________________________________________________________________________

Rubi [A]  time = 0.0090298, antiderivative size = 31, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.1, Rules used = {1166, 207} \[ -\frac{\tanh ^{-1}\left (\frac{x}{\sqrt{2}}\right )}{\sqrt{2}}-\frac{\tanh ^{-1}\left (\frac{x}{\sqrt{3}}\right )}{\sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Int[(-5 + 2*x^2)/(6 - 5*x^2 + x^4),x]

[Out]

-(ArcTanh[x/Sqrt[2]]/Sqrt[2]) - ArcTanh[x/Sqrt[3]]/Sqrt[3]

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{-5+2 x^2}{6-5 x^2+x^4} \, dx &=\int \frac{1}{-3+x^2} \, dx+\int \frac{1}{-2+x^2} \, dx\\ &=-\frac{\tanh ^{-1}\left (\frac{x}{\sqrt{2}}\right )}{\sqrt{2}}-\frac{\tanh ^{-1}\left (\frac{x}{\sqrt{3}}\right )}{\sqrt{3}}\\ \end{align*}

Mathematica [B]  time = 0.0178556, size = 69, normalized size = 2.23 \[ \frac{1}{12} \left (3 \sqrt{2} \log \left (\sqrt{2}-x\right )+2 \sqrt{3} \log \left (\sqrt{3}-x\right )-3 \sqrt{2} \log \left (x+\sqrt{2}\right )-2 \sqrt{3} \log \left (x+\sqrt{3}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(-5 + 2*x^2)/(6 - 5*x^2 + x^4),x]

[Out]

(3*Sqrt[2]*Log[Sqrt[2] - x] + 2*Sqrt[3]*Log[Sqrt[3] - x] - 3*Sqrt[2]*Log[Sqrt[2] + x] - 2*Sqrt[3]*Log[Sqrt[3]
+ x])/12

________________________________________________________________________________________

Maple [A]  time = 0.008, size = 26, normalized size = 0.8 \begin{align*} -{\frac{\sqrt{2}}{2}{\it Artanh} \left ({\frac{x\sqrt{2}}{2}} \right ) }-{\frac{\sqrt{3}}{3}{\it Artanh} \left ({\frac{x\sqrt{3}}{3}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x^2-5)/(x^4-5*x^2+6),x)

[Out]

-1/2*arctanh(1/2*x*2^(1/2))*2^(1/2)-1/3*arctanh(1/3*x*3^(1/2))*3^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.42559, size = 58, normalized size = 1.87 \begin{align*} \frac{1}{6} \, \sqrt{3} \log \left (\frac{x - \sqrt{3}}{x + \sqrt{3}}\right ) + \frac{1}{4} \, \sqrt{2} \log \left (\frac{x - \sqrt{2}}{x + \sqrt{2}}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^2-5)/(x^4-5*x^2+6),x, algorithm="maxima")

[Out]

1/6*sqrt(3)*log((x - sqrt(3))/(x + sqrt(3))) + 1/4*sqrt(2)*log((x - sqrt(2))/(x + sqrt(2)))

________________________________________________________________________________________

Fricas [B]  time = 2.12263, size = 142, normalized size = 4.58 \begin{align*} \frac{1}{4} \, \sqrt{2} \log \left (\frac{x^{2} - 2 \, \sqrt{2} x + 2}{x^{2} - 2}\right ) + \frac{1}{6} \, \sqrt{3} \log \left (\frac{x^{2} - 2 \, \sqrt{3} x + 3}{x^{2} - 3}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^2-5)/(x^4-5*x^2+6),x, algorithm="fricas")

[Out]

1/4*sqrt(2)*log((x^2 - 2*sqrt(2)*x + 2)/(x^2 - 2)) + 1/6*sqrt(3)*log((x^2 - 2*sqrt(3)*x + 3)/(x^2 - 3))

________________________________________________________________________________________

Sympy [A]  time = 0.476763, size = 60, normalized size = 1.94 \begin{align*} \frac{\sqrt{2} \log{\left (x - \sqrt{2} \right )}}{4} - \frac{\sqrt{2} \log{\left (x + \sqrt{2} \right )}}{4} + \frac{\sqrt{3} \log{\left (x - \sqrt{3} \right )}}{6} - \frac{\sqrt{3} \log{\left (x + \sqrt{3} \right )}}{6} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x**2-5)/(x**4-5*x**2+6),x)

[Out]

sqrt(2)*log(x - sqrt(2))/4 - sqrt(2)*log(x + sqrt(2))/4 + sqrt(3)*log(x - sqrt(3))/6 - sqrt(3)*log(x + sqrt(3)
)/6

________________________________________________________________________________________

Giac [B]  time = 1.06288, size = 80, normalized size = 2.58 \begin{align*} \frac{1}{6} \, \sqrt{3} \log \left (\frac{{\left | 2 \, x - 2 \, \sqrt{3} \right |}}{{\left | 2 \, x + 2 \, \sqrt{3} \right |}}\right ) + \frac{1}{4} \, \sqrt{2} \log \left (\frac{{\left | 2 \, x - 2 \, \sqrt{2} \right |}}{{\left | 2 \, x + 2 \, \sqrt{2} \right |}}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^2-5)/(x^4-5*x^2+6),x, algorithm="giac")

[Out]

1/6*sqrt(3)*log(abs(2*x - 2*sqrt(3))/abs(2*x + 2*sqrt(3))) + 1/4*sqrt(2)*log(abs(2*x - 2*sqrt(2))/abs(2*x + 2*
sqrt(2)))