3.410 \(\int \frac{\csc (x)}{\sin ^{\frac{3}{2}}(2 x)} \, dx\)

Optimal. Leaf size=29 \[ \frac{4 \sin (x)}{3 \sqrt{\sin (2 x)}}-\frac{2 \cos (x)}{3 \sin ^{\frac{3}{2}}(2 x)} \]

[Out]

(-2*Cos[x])/(3*Sin[2*x]^(3/2)) + (4*Sin[x])/(3*Sqrt[Sin[2*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0476002, antiderivative size = 29, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.273, Rules used = {4308, 4303, 4292} \[ \frac{4 \sin (x)}{3 \sqrt{\sin (2 x)}}-\frac{2 \cos (x)}{3 \sin ^{\frac{3}{2}}(2 x)} \]

Antiderivative was successfully verified.

[In]

Int[Csc[x]/Sin[2*x]^(3/2),x]

[Out]

(-2*Cos[x])/(3*Sin[2*x]^(3/2)) + (4*Sin[x])/(3*Sqrt[Sin[2*x]])

Rule 4308

Int[((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_)/sin[(a_.) + (b_.)*(x_)], x_Symbol] :> Dist[2*g, Int[Cos[a + b*x]*(g*S
in[c + d*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, g, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&  !IntegerQ
[p] && IntegerQ[2*p]

Rule 4303

Int[cos[(a_.) + (b_.)*(x_)]*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[(Cos[a + b*x]*(g*Sin[c + d
*x])^(p + 1))/(2*b*g*(p + 1)), x] + Dist[(2*p + 3)/(2*g*(p + 1)), Int[Sin[a + b*x]*(g*Sin[c + d*x])^(p + 1), x
], x] /; FreeQ[{a, b, c, d, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&  !IntegerQ[p] && LtQ[p, -1] && Integ
erQ[2*p]

Rule 4292

Int[((e_.)*sin[(a_.) + (b_.)*(x_)])^(m_.)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[((e*Sin[a +
b*x])^m*(g*Sin[c + d*x])^(p + 1))/(b*g*m), x] /; FreeQ[{a, b, c, d, e, g, m, p}, x] && EqQ[b*c - a*d, 0] && Eq
Q[d/b, 2] &&  !IntegerQ[p] && EqQ[m + 2*p + 2, 0]

Rubi steps

\begin{align*} \int \frac{\csc (x)}{\sin ^{\frac{3}{2}}(2 x)} \, dx &=2 \int \frac{\cos (x)}{\sin ^{\frac{5}{2}}(2 x)} \, dx\\ &=-\frac{2 \cos (x)}{3 \sin ^{\frac{3}{2}}(2 x)}+\frac{4}{3} \int \frac{\sin (x)}{\sin ^{\frac{3}{2}}(2 x)} \, dx\\ &=-\frac{2 \cos (x)}{3 \sin ^{\frac{3}{2}}(2 x)}+\frac{4 \sin (x)}{3 \sqrt{\sin (2 x)}}\\ \end{align*}

Mathematica [A]  time = 0.0300172, size = 24, normalized size = 0.83 \[ \sqrt{\sin (2 x)} \left (\frac{\sec (x)}{2}-\frac{1}{6} \cot (x) \csc (x)\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[x]/Sin[2*x]^(3/2),x]

[Out]

(-(Cot[x]*Csc[x])/6 + Sec[x]/2)*Sqrt[Sin[2*x]]

________________________________________________________________________________________

Maple [C]  time = 0.039, size = 121, normalized size = 4.2 \begin{align*} -{\frac{1}{12}\sqrt{-{\tan \left ({\frac{x}{2}} \right ) \left ( \left ( \tan \left ({\frac{x}{2}} \right ) \right ) ^{2}-1 \right ) ^{-1}}} \left ( \left ( \tan \left ({\frac{x}{2}} \right ) \right ) ^{2}-1 \right ) \left ( 2\,\sqrt{1+\tan \left ( x/2 \right ) }\sqrt{-2\,\tan \left ( x/2 \right ) +2}\sqrt{-\tan \left ( x/2 \right ) }{\it EllipticF} \left ( \sqrt{1+\tan \left ( x/2 \right ) },1/2\,\sqrt{2} \right ) \tan \left ( x/2 \right ) - \left ( \tan \left ({\frac{x}{2}} \right ) \right ) ^{4}+1 \right ) \left ( \tan \left ({\frac{x}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{\tan \left ({\frac{x}{2}} \right ) \left ( \left ( \tan \left ({\frac{x}{2}} \right ) \right ) ^{2}-1 \right ) }}}{\frac{1}{\sqrt{ \left ( \tan \left ({\frac{x}{2}} \right ) \right ) ^{3}-\tan \left ({\frac{x}{2}} \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/sin(x)/sin(2*x)^(3/2),x)

[Out]

-1/12*(-tan(1/2*x)/(tan(1/2*x)^2-1))^(1/2)*(tan(1/2*x)^2-1)/tan(1/2*x)*(2*(1+tan(1/2*x))^(1/2)*(-2*tan(1/2*x)+
2)^(1/2)*(-tan(1/2*x))^(1/2)*EllipticF((1+tan(1/2*x))^(1/2),1/2*2^(1/2))*tan(1/2*x)-tan(1/2*x)^4+1)/(tan(1/2*x
)*(tan(1/2*x)^2-1))^(1/2)/(tan(1/2*x)^3-tan(1/2*x))^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sin \left (2 \, x\right )^{\frac{3}{2}} \sin \left (x\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sin(x)/sin(2*x)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/(sin(2*x)^(3/2)*sin(x)), x)

________________________________________________________________________________________

Fricas [B]  time = 1.88893, size = 130, normalized size = 4.48 \begin{align*} \frac{4 \, \cos \left (x\right )^{3} + \sqrt{2}{\left (4 \, \cos \left (x\right )^{2} - 3\right )} \sqrt{\cos \left (x\right ) \sin \left (x\right )} - 4 \, \cos \left (x\right )}{6 \,{\left (\cos \left (x\right )^{3} - \cos \left (x\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sin(x)/sin(2*x)^(3/2),x, algorithm="fricas")

[Out]

1/6*(4*cos(x)^3 + sqrt(2)*(4*cos(x)^2 - 3)*sqrt(cos(x)*sin(x)) - 4*cos(x))/(cos(x)^3 - cos(x))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sin(x)/sin(2*x)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sin \left (2 \, x\right )^{\frac{3}{2}} \sin \left (x\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sin(x)/sin(2*x)^(3/2),x, algorithm="giac")

[Out]

integrate(1/(sin(2*x)^(3/2)*sin(x)), x)