3.327 \(\int \frac{1-x^2}{(1+2 a x+x^2) \sqrt{1+2 a x+2 b x^2+2 a x^3+x^4}} \, dx\)

Optimal. Leaf size=74 \[ \frac{\tan ^{-1}\left (\frac{2 x \left (a^2-b+1\right )+a x^2+a}{\sqrt{2} \sqrt{1-b} \sqrt{2 a x^3+2 a x+2 b x^2+x^4+1}}\right )}{\sqrt{2} \sqrt{1-b}} \]

[Out]

ArcTan[(a + 2*(1 + a^2 - b)*x + a*x^2)/(Sqrt[2]*Sqrt[1 - b]*Sqrt[1 + 2*a*x + 2*b*x^2 + 2*a*x^3 + x^4])]/(Sqrt[
2]*Sqrt[1 - b])

________________________________________________________________________________________

Rubi [A]  time = 0.204305, antiderivative size = 74, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 44, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.023, Rules used = {2084} \[ \frac{\tan ^{-1}\left (\frac{2 x \left (a^2-b+1\right )+a x^2+a}{\sqrt{2} \sqrt{1-b} \sqrt{2 a x^3+2 a x+2 b x^2+x^4+1}}\right )}{\sqrt{2} \sqrt{1-b}} \]

Antiderivative was successfully verified.

[In]

Int[(1 - x^2)/((1 + 2*a*x + x^2)*Sqrt[1 + 2*a*x + 2*b*x^2 + 2*a*x^3 + x^4]),x]

[Out]

ArcTan[(a + 2*(1 + a^2 - b)*x + a*x^2)/(Sqrt[2]*Sqrt[1 - b]*Sqrt[1 + 2*a*x + 2*b*x^2 + 2*a*x^3 + x^4])]/(Sqrt[
2]*Sqrt[1 - b])

Rule 2084

Int[((f_) + (g_.)*(x_)^2)/(((d_) + (e_.)*(x_) + (d_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2 + (b_.)*(x
_)^3 + (a_.)*(x_)^4]), x_Symbol] :> Simp[(a*f*ArcTan[(a*b + (4*a^2 + b^2 - 2*a*c)*x + a*b*x^2)/(2*Rt[a^2*(2*a
- c), 2]*Sqrt[a + b*x + c*x^2 + b*x^3 + a*x^4])])/(d*Rt[a^2*(2*a - c), 2]), x] /; FreeQ[{a, b, c, d, e, f, g},
 x] && EqQ[b*d - a*e, 0] && EqQ[f + g, 0] && PosQ[a^2*(2*a - c)]

Rubi steps

\begin{align*} \int \frac{1-x^2}{\left (1+2 a x+x^2\right ) \sqrt{1+2 a x+2 b x^2+2 a x^3+x^4}} \, dx &=\frac{\tan ^{-1}\left (\frac{a+2 \left (1+a^2-b\right ) x+a x^2}{\sqrt{2} \sqrt{1-b} \sqrt{1+2 a x+2 b x^2+2 a x^3+x^4}}\right )}{\sqrt{2} \sqrt{1-b}}\\ \end{align*}

Mathematica [C]  time = 6.45998, size = 17955, normalized size = 242.64 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(1 - x^2)/((1 + 2*a*x + x^2)*Sqrt[1 + 2*a*x + 2*b*x^2 + 2*a*x^3 + x^4]),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [C]  time = 0.114, size = 247419, normalized size = 3343.5 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x^2+1)/(2*a*x+x^2+1)/(2*a*x^3+x^4+2*b*x^2+2*a*x+1)^(1/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{x^{2} - 1}{\sqrt{2 \, a x^{3} + x^{4} + 2 \, b x^{2} + 2 \, a x + 1}{\left (2 \, a x + x^{2} + 1\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+1)/(2*a*x+x^2+1)/(2*a*x^3+x^4+2*b*x^2+2*a*x+1)^(1/2),x, algorithm="maxima")

[Out]

-integrate((x^2 - 1)/(sqrt(2*a*x^3 + x^4 + 2*b*x^2 + 2*a*x + 1)*(2*a*x + x^2 + 1)), x)

________________________________________________________________________________________

Fricas [A]  time = 3.10011, size = 633, normalized size = 8.55 \begin{align*} \left [\frac{\sqrt{2} \log \left (\frac{4 \, a^{3} x^{3} +{\left (a^{2} + 2 \, b - 2\right )} x^{4} + 4 \, a^{3} x + 2 \,{\left (2 \, a^{4} + 5 \, a^{2} - 2 \,{\left (2 \, a^{2} + 3\right )} b + 4 \, b^{2} + 2\right )} x^{2} + a^{2} - \frac{2 \, \sqrt{2} \sqrt{2 \, a x^{3} + x^{4} + 2 \, b x^{2} + 2 \, a x + 1}{\left ({\left (a b - a\right )} x^{2} + a b - 2 \,{\left (a^{2} -{\left (a^{2} + 2\right )} b + b^{2} + 1\right )} x - a\right )}}{\sqrt{b - 1}} + 2 \, b - 2}{4 \, a x^{3} + x^{4} + 2 \,{\left (2 \, a^{2} + 1\right )} x^{2} + 4 \, a x + 1}\right )}{4 \, \sqrt{b - 1}}, \frac{1}{2} \, \sqrt{2} \sqrt{-\frac{1}{b - 1}} \arctan \left (\frac{\sqrt{2} \sqrt{2 \, a x^{3} + x^{4} + 2 \, b x^{2} + 2 \, a x + 1}{\left (b - 1\right )} \sqrt{-\frac{1}{b - 1}}}{a x^{2} + 2 \,{\left (a^{2} - b + 1\right )} x + a}\right )\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+1)/(2*a*x+x^2+1)/(2*a*x^3+x^4+2*b*x^2+2*a*x+1)^(1/2),x, algorithm="fricas")

[Out]

[1/4*sqrt(2)*log((4*a^3*x^3 + (a^2 + 2*b - 2)*x^4 + 4*a^3*x + 2*(2*a^4 + 5*a^2 - 2*(2*a^2 + 3)*b + 4*b^2 + 2)*
x^2 + a^2 - 2*sqrt(2)*sqrt(2*a*x^3 + x^4 + 2*b*x^2 + 2*a*x + 1)*((a*b - a)*x^2 + a*b - 2*(a^2 - (a^2 + 2)*b +
b^2 + 1)*x - a)/sqrt(b - 1) + 2*b - 2)/(4*a*x^3 + x^4 + 2*(2*a^2 + 1)*x^2 + 4*a*x + 1))/sqrt(b - 1), 1/2*sqrt(
2)*sqrt(-1/(b - 1))*arctan(sqrt(2)*sqrt(2*a*x^3 + x^4 + 2*b*x^2 + 2*a*x + 1)*(b - 1)*sqrt(-1/(b - 1))/(a*x^2 +
 2*(a^2 - b + 1)*x + a))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{x^{2}}{2 a x \sqrt{2 a x^{3} + 2 a x + 2 b x^{2} + x^{4} + 1} + x^{2} \sqrt{2 a x^{3} + 2 a x + 2 b x^{2} + x^{4} + 1} + \sqrt{2 a x^{3} + 2 a x + 2 b x^{2} + x^{4} + 1}}\, dx - \int - \frac{1}{2 a x \sqrt{2 a x^{3} + 2 a x + 2 b x^{2} + x^{4} + 1} + x^{2} \sqrt{2 a x^{3} + 2 a x + 2 b x^{2} + x^{4} + 1} + \sqrt{2 a x^{3} + 2 a x + 2 b x^{2} + x^{4} + 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x**2+1)/(2*a*x+x**2+1)/(2*a*x**3+x**4+2*b*x**2+2*a*x+1)**(1/2),x)

[Out]

-Integral(x**2/(2*a*x*sqrt(2*a*x**3 + 2*a*x + 2*b*x**2 + x**4 + 1) + x**2*sqrt(2*a*x**3 + 2*a*x + 2*b*x**2 + x
**4 + 1) + sqrt(2*a*x**3 + 2*a*x + 2*b*x**2 + x**4 + 1)), x) - Integral(-1/(2*a*x*sqrt(2*a*x**3 + 2*a*x + 2*b*
x**2 + x**4 + 1) + x**2*sqrt(2*a*x**3 + 2*a*x + 2*b*x**2 + x**4 + 1) + sqrt(2*a*x**3 + 2*a*x + 2*b*x**2 + x**4
 + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{x^{2} - 1}{\sqrt{2 \, a x^{3} + x^{4} + 2 \, b x^{2} + 2 \, a x + 1}{\left (2 \, a x + x^{2} + 1\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+1)/(2*a*x+x^2+1)/(2*a*x^3+x^4+2*b*x^2+2*a*x+1)^(1/2),x, algorithm="giac")

[Out]

integrate(-(x^2 - 1)/(sqrt(2*a*x^3 + x^4 + 2*b*x^2 + 2*a*x + 1)*(2*a*x + x^2 + 1)), x)