3.324 \(\int \frac{1+x^2}{(1-x^2) \sqrt{1+x^2+x^4}} \, dx\)

Optimal. Leaf size=26 \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{3} x}{\sqrt{x^4+x^2+1}}\right )}{\sqrt{3}} \]

[Out]

ArcTanh[(Sqrt[3]*x)/Sqrt[1 + x^2 + x^4]]/Sqrt[3]

________________________________________________________________________________________

Rubi [A]  time = 0.0432189, antiderivative size = 26, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.074, Rules used = {1698, 206} \[ \frac{\tanh ^{-1}\left (\frac{\sqrt{3} x}{\sqrt{x^4+x^2+1}}\right )}{\sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Int[(1 + x^2)/((1 - x^2)*Sqrt[1 + x^2 + x^4]),x]

[Out]

ArcTanh[(Sqrt[3]*x)/Sqrt[1 + x^2 + x^4]]/Sqrt[3]

Rule 1698

Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Dist[
A, Subst[Int[1/(d - (b*d - 2*a*e)*x^2), x], x, x/Sqrt[a + b*x^2 + c*x^4]], x] /; FreeQ[{a, b, c, d, e, A, B},
x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[c*d^2 - a*e^2, 0] && EqQ[B*d + A*e, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1+x^2}{\left (1-x^2\right ) \sqrt{1+x^2+x^4}} \, dx &=\operatorname{Subst}\left (\int \frac{1}{1-3 x^2} \, dx,x,\frac{x}{\sqrt{1+x^2+x^4}}\right )\\ &=\frac{\tanh ^{-1}\left (\frac{\sqrt{3} x}{\sqrt{1+x^2+x^4}}\right )}{\sqrt{3}}\\ \end{align*}

Mathematica [C]  time = 1.23863, size = 522, normalized size = 20.08 \[ \frac{(-1)^{2/3} \left (-\sqrt [3]{-1} \left (\sqrt [3]{-1}-1\right )^2 \left (1+\sqrt [3]{-1}\right ) \sqrt{\sqrt [3]{-1} x^2+1} \sqrt{1-(-1)^{2/3} x^2} \text{EllipticF}\left (i \sinh ^{-1}\left ((-1)^{5/6} x\right ),(-1)^{2/3}\right )-2 i \sqrt{3} \sqrt{\frac{(-1)^{2/3}-x}{\left (1+\sqrt [3]{-1}\right ) \left (\sqrt [3]{-1}-x\right )}} \sqrt{\frac{x+(-1)^{2/3}}{-\sqrt [3]{-1} x+x-1}} \sqrt{\frac{-\sqrt [3]{-1} x+x+1}{\left (1+\sqrt [3]{-1}\right ) \left (\sqrt [3]{-1}-x\right )}} \left (\sqrt [3]{-1}-x\right )^2 \left (\left (1+\sqrt [3]{-1}\right ) \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{-\sqrt [3]{-1} x+x+1}{\left (1+\sqrt [3]{-1}\right ) \left (\sqrt [3]{-1}-x\right )}}\right ),-3\right )-2 \sqrt [3]{-1} \Pi \left (-1;\left .\sin ^{-1}\left (\sqrt{\frac{-\sqrt [3]{-1} x+x+1}{\left (1+\sqrt [3]{-1}\right ) \left (\sqrt [3]{-1}-x\right )}}\right )\right |-3\right )\right )+2 i \sqrt{3} \sqrt{\frac{(-1)^{2/3}-x}{\left (1+\sqrt [3]{-1}\right ) \left (\sqrt [3]{-1}-x\right )}} \sqrt{\frac{x+(-1)^{2/3}}{-\sqrt [3]{-1} x+x-1}} \sqrt{\frac{-\sqrt [3]{-1} x+x+1}{\left (1+\sqrt [3]{-1}\right ) \left (\sqrt [3]{-1}-x\right )}} \left (\sqrt [3]{-1}-x\right )^2 \left (\left (\sqrt [3]{-1}-1\right ) \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{-\sqrt [3]{-1} x+x+1}{\left (1+\sqrt [3]{-1}\right ) \left (\sqrt [3]{-1}-x\right )}}\right ),-3\right )-2 \sqrt [3]{-1} \Pi \left (3;\left .\sin ^{-1}\left (\sqrt{\frac{-\sqrt [3]{-1} x+x+1}{\left (1+\sqrt [3]{-1}\right ) \left (\sqrt [3]{-1}-x\right )}}\right )\right |-3\right )\right )\right )}{\left (1-(-1)^{2/3}\right ) \sqrt{x^4+x^2+1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(1 + x^2)/((1 - x^2)*Sqrt[1 + x^2 + x^4]),x]

[Out]

((-1)^(2/3)*(-((-1)^(1/3)*(-1 + (-1)^(1/3))^2*(1 + (-1)^(1/3))*Sqrt[1 + (-1)^(1/3)*x^2]*Sqrt[1 - (-1)^(2/3)*x^
2]*EllipticF[I*ArcSinh[(-1)^(5/6)*x], (-1)^(2/3)]) - (2*I)*Sqrt[3]*((-1)^(1/3) - x)^2*Sqrt[((-1)^(2/3) - x)/((
1 + (-1)^(1/3))*((-1)^(1/3) - x))]*Sqrt[((-1)^(2/3) + x)/(-1 + x - (-1)^(1/3)*x)]*Sqrt[(1 + x - (-1)^(1/3)*x)/
((1 + (-1)^(1/3))*((-1)^(1/3) - x))]*((1 + (-1)^(1/3))*EllipticF[ArcSin[Sqrt[(1 + x - (-1)^(1/3)*x)/((1 + (-1)
^(1/3))*((-1)^(1/3) - x))]], -3] - 2*(-1)^(1/3)*EllipticPi[-1, ArcSin[Sqrt[(1 + x - (-1)^(1/3)*x)/((1 + (-1)^(
1/3))*((-1)^(1/3) - x))]], -3]) + (2*I)*Sqrt[3]*((-1)^(1/3) - x)^2*Sqrt[((-1)^(2/3) - x)/((1 + (-1)^(1/3))*((-
1)^(1/3) - x))]*Sqrt[((-1)^(2/3) + x)/(-1 + x - (-1)^(1/3)*x)]*Sqrt[(1 + x - (-1)^(1/3)*x)/((1 + (-1)^(1/3))*(
(-1)^(1/3) - x))]*((-1 + (-1)^(1/3))*EllipticF[ArcSin[Sqrt[(1 + x - (-1)^(1/3)*x)/((1 + (-1)^(1/3))*((-1)^(1/3
) - x))]], -3] - 2*(-1)^(1/3)*EllipticPi[3, ArcSin[Sqrt[(1 + x - (-1)^(1/3)*x)/((1 + (-1)^(1/3))*((-1)^(1/3) -
 x))]], -3])))/((1 - (-1)^(2/3))*Sqrt[1 + x^2 + x^4])

________________________________________________________________________________________

Maple [C]  time = 0.157, size = 184, normalized size = 7.1 \begin{align*} -2\,{\frac{\sqrt{1- \left ( -1/2+i/2\sqrt{3} \right ){x}^{2}}\sqrt{1- \left ( -1/2-i/2\sqrt{3} \right ){x}^{2}}{\it EllipticF} \left ( 1/2\,x\sqrt{-2+2\,i\sqrt{3}},1/2\,\sqrt{-2+2\,i\sqrt{3}} \right ) }{\sqrt{-2+2\,i\sqrt{3}}\sqrt{{x}^{4}+{x}^{2}+1}}}+2\,{\frac{\sqrt{1- \left ( -1/2+i/2\sqrt{3} \right ){x}^{2}}\sqrt{1- \left ( -1/2-i/2\sqrt{3} \right ){x}^{2}}}{\sqrt{-1/2+i/2\sqrt{3}}\sqrt{{x}^{4}+{x}^{2}+1}}{\it EllipticPi} \left ( \sqrt{-1/2+i/2\sqrt{3}}x, \left ( -1/2+i/2\sqrt{3} \right ) ^{-1},{\frac{\sqrt{-1/2-i/2\sqrt{3}}}{\sqrt{-1/2+i/2\sqrt{3}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2+1)/(-x^2+1)/(x^4+x^2+1)^(1/2),x)

[Out]

-2/(-2+2*I*3^(1/2))^(1/2)*(1-(-1/2+1/2*I*3^(1/2))*x^2)^(1/2)*(1-(-1/2-1/2*I*3^(1/2))*x^2)^(1/2)/(x^4+x^2+1)^(1
/2)*EllipticF(1/2*x*(-2+2*I*3^(1/2))^(1/2),1/2*(-2+2*I*3^(1/2))^(1/2))+2/(-1/2+1/2*I*3^(1/2))^(1/2)*(1-(-1/2+1
/2*I*3^(1/2))*x^2)^(1/2)*(1-(-1/2-1/2*I*3^(1/2))*x^2)^(1/2)/(x^4+x^2+1)^(1/2)*EllipticPi((-1/2+1/2*I*3^(1/2))^
(1/2)*x,1/(-1/2+1/2*I*3^(1/2)),(-1/2-1/2*I*3^(1/2))^(1/2)/(-1/2+1/2*I*3^(1/2))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{x^{2} + 1}{\sqrt{x^{4} + x^{2} + 1}{\left (x^{2} - 1\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)/(-x^2+1)/(x^4+x^2+1)^(1/2),x, algorithm="maxima")

[Out]

-integrate((x^2 + 1)/(sqrt(x^4 + x^2 + 1)*(x^2 - 1)), x)

________________________________________________________________________________________

Fricas [B]  time = 1.73039, size = 119, normalized size = 4.58 \begin{align*} \frac{1}{6} \, \sqrt{3} \log \left (\frac{x^{4} + 2 \, \sqrt{3} \sqrt{x^{4} + x^{2} + 1} x + 4 \, x^{2} + 1}{x^{4} - 2 \, x^{2} + 1}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)/(-x^2+1)/(x^4+x^2+1)^(1/2),x, algorithm="fricas")

[Out]

1/6*sqrt(3)*log((x^4 + 2*sqrt(3)*sqrt(x^4 + x^2 + 1)*x + 4*x^2 + 1)/(x^4 - 2*x^2 + 1))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{x^{2}}{x^{2} \sqrt{x^{4} + x^{2} + 1} - \sqrt{x^{4} + x^{2} + 1}}\, dx - \int \frac{1}{x^{2} \sqrt{x^{4} + x^{2} + 1} - \sqrt{x^{4} + x^{2} + 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x**2+1)/(-x**2+1)/(x**4+x**2+1)**(1/2),x)

[Out]

-Integral(x**2/(x**2*sqrt(x**4 + x**2 + 1) - sqrt(x**4 + x**2 + 1)), x) - Integral(1/(x**2*sqrt(x**4 + x**2 +
1) - sqrt(x**4 + x**2 + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int -\frac{x^{2} + 1}{\sqrt{x^{4} + x^{2} + 1}{\left (x^{2} - 1\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((x^2+1)/(-x^2+1)/(x^4+x^2+1)^(1/2),x, algorithm="giac")

[Out]

integrate(-(x^2 + 1)/(sqrt(x^4 + x^2 + 1)*(x^2 - 1)), x)