3.113 \(\int \frac{1}{1+x^2+x^4} \, dx\)

Optimal. Leaf size=67 \[ -\frac{1}{4} \log \left (x^2-x+1\right )+\frac{1}{4} \log \left (x^2+x+1\right )-\frac{\tan ^{-1}\left (\frac{1-2 x}{\sqrt{3}}\right )}{2 \sqrt{3}}+\frac{\tan ^{-1}\left (\frac{2 x+1}{\sqrt{3}}\right )}{2 \sqrt{3}} \]

[Out]

-ArcTan[(1 - 2*x)/Sqrt[3]]/(2*Sqrt[3]) + ArcTan[(1 + 2*x)/Sqrt[3]]/(2*Sqrt[3]) - Log[1 - x + x^2]/4 + Log[1 +
x + x^2]/4

________________________________________________________________________________________

Rubi [A]  time = 0.0380003, antiderivative size = 67, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 5, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {1094, 634, 618, 204, 628} \[ -\frac{1}{4} \log \left (x^2-x+1\right )+\frac{1}{4} \log \left (x^2+x+1\right )-\frac{\tan ^{-1}\left (\frac{1-2 x}{\sqrt{3}}\right )}{2 \sqrt{3}}+\frac{\tan ^{-1}\left (\frac{2 x+1}{\sqrt{3}}\right )}{2 \sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Int[(1 + x^2 + x^4)^(-1),x]

[Out]

-ArcTan[(1 - 2*x)/Sqrt[3]]/(2*Sqrt[3]) + ArcTan[(1 + 2*x)/Sqrt[3]]/(2*Sqrt[3]) - Log[1 - x + x^2]/4 + Log[1 +
x + x^2]/4

Rule 1094

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}
, Dist[1/(2*c*q*r), Int[(r - x)/(q - r*x + x^2), x], x] + Dist[1/(2*c*q*r), Int[(r + x)/(q + r*x + x^2), x], x
]]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[b^2 - 4*a*c]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{1}{1+x^2+x^4} \, dx &=\frac{1}{2} \int \frac{1-x}{1-x+x^2} \, dx+\frac{1}{2} \int \frac{1+x}{1+x+x^2} \, dx\\ &=\frac{1}{4} \int \frac{1}{1-x+x^2} \, dx-\frac{1}{4} \int \frac{-1+2 x}{1-x+x^2} \, dx+\frac{1}{4} \int \frac{1}{1+x+x^2} \, dx+\frac{1}{4} \int \frac{1+2 x}{1+x+x^2} \, dx\\ &=-\frac{1}{4} \log \left (1-x+x^2\right )+\frac{1}{4} \log \left (1+x+x^2\right )-\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,-1+2 x\right )-\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1+2 x\right )\\ &=-\frac{\tan ^{-1}\left (\frac{1-2 x}{\sqrt{3}}\right )}{2 \sqrt{3}}+\frac{\tan ^{-1}\left (\frac{1+2 x}{\sqrt{3}}\right )}{2 \sqrt{3}}-\frac{1}{4} \log \left (1-x+x^2\right )+\frac{1}{4} \log \left (1+x+x^2\right )\\ \end{align*}

Mathematica [C]  time = 0.0577123, size = 73, normalized size = 1.09 \[ \frac{i \left (\sqrt{1-i \sqrt{3}} \tan ^{-1}\left (\frac{1}{2} \left (\sqrt{3}-i\right ) x\right )-\sqrt{1+i \sqrt{3}} \tan ^{-1}\left (\frac{1}{2} \left (\sqrt{3}+i\right ) x\right )\right )}{\sqrt{6}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(1 + x^2 + x^4)^(-1),x]

[Out]

(I*(Sqrt[1 - I*Sqrt[3]]*ArcTan[((-I + Sqrt[3])*x)/2] - Sqrt[1 + I*Sqrt[3]]*ArcTan[((I + Sqrt[3])*x)/2]))/Sqrt[
6]

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 54, normalized size = 0.8 \begin{align*} -{\frac{\ln \left ({x}^{2}-x+1 \right ) }{4}}+{\frac{\sqrt{3}}{6}\arctan \left ({\frac{ \left ( 2\,x-1 \right ) \sqrt{3}}{3}} \right ) }+{\frac{\ln \left ({x}^{2}+x+1 \right ) }{4}}+{\frac{\sqrt{3}}{6}\arctan \left ({\frac{ \left ( 1+2\,x \right ) \sqrt{3}}{3}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^4+x^2+1),x)

[Out]

-1/4*ln(x^2-x+1)+1/6*3^(1/2)*arctan(1/3*(2*x-1)*3^(1/2))+1/4*ln(x^2+x+1)+1/6*arctan(1/3*(1+2*x)*3^(1/2))*3^(1/
2)

________________________________________________________________________________________

Maxima [A]  time = 1.43509, size = 72, normalized size = 1.07 \begin{align*} \frac{1}{6} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x + 1\right )}\right ) + \frac{1}{6} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x - 1\right )}\right ) + \frac{1}{4} \, \log \left (x^{2} + x + 1\right ) - \frac{1}{4} \, \log \left (x^{2} - x + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^4+x^2+1),x, algorithm="maxima")

[Out]

1/6*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) + 1/6*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) + 1/4*log(x^2 + x + 1) -
 1/4*log(x^2 - x + 1)

________________________________________________________________________________________

Fricas [A]  time = 2.07286, size = 180, normalized size = 2.69 \begin{align*} \frac{1}{6} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x + 1\right )}\right ) + \frac{1}{6} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x - 1\right )}\right ) + \frac{1}{4} \, \log \left (x^{2} + x + 1\right ) - \frac{1}{4} \, \log \left (x^{2} - x + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^4+x^2+1),x, algorithm="fricas")

[Out]

1/6*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) + 1/6*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) + 1/4*log(x^2 + x + 1) -
 1/4*log(x^2 - x + 1)

________________________________________________________________________________________

Sympy [A]  time = 0.162888, size = 70, normalized size = 1.04 \begin{align*} - \frac{\log{\left (x^{2} - x + 1 \right )}}{4} + \frac{\log{\left (x^{2} + x + 1 \right )}}{4} + \frac{\sqrt{3} \operatorname{atan}{\left (\frac{2 \sqrt{3} x}{3} - \frac{\sqrt{3}}{3} \right )}}{6} + \frac{\sqrt{3} \operatorname{atan}{\left (\frac{2 \sqrt{3} x}{3} + \frac{\sqrt{3}}{3} \right )}}{6} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x**4+x**2+1),x)

[Out]

-log(x**2 - x + 1)/4 + log(x**2 + x + 1)/4 + sqrt(3)*atan(2*sqrt(3)*x/3 - sqrt(3)/3)/6 + sqrt(3)*atan(2*sqrt(3
)*x/3 + sqrt(3)/3)/6

________________________________________________________________________________________

Giac [A]  time = 1.05511, size = 72, normalized size = 1.07 \begin{align*} \frac{1}{6} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x + 1\right )}\right ) + \frac{1}{6} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x - 1\right )}\right ) + \frac{1}{4} \, \log \left (x^{2} + x + 1\right ) - \frac{1}{4} \, \log \left (x^{2} - x + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(x^4+x^2+1),x, algorithm="giac")

[Out]

1/6*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) + 1/6*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) + 1/4*log(x^2 + x + 1) -
 1/4*log(x^2 - x + 1)