### 3.64 $$\int \cos ^2(x) \sin ^4(x) \, dx$$

Optimal. Leaf size=36 $\frac{x}{16}-\frac{1}{6} \sin ^3(x) \cos ^3(x)-\frac{1}{8} \sin (x) \cos ^3(x)+\frac{1}{16} \sin (x) \cos (x)$

[Out]

x/16 + (Cos[x]*Sin[x])/16 - (Cos[x]^3*Sin[x])/8 - (Cos[x]^3*Sin[x]^3)/6

________________________________________________________________________________________

Rubi [A]  time = 0.0448538, antiderivative size = 36, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 9, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.333, Rules used = {2568, 2635, 8} $\frac{x}{16}-\frac{1}{6} \sin ^3(x) \cos ^3(x)-\frac{1}{8} \sin (x) \cos ^3(x)+\frac{1}{16} \sin (x) \cos (x)$

Antiderivative was successfully veriﬁed.

[In]

Int[Cos[x]^2*Sin[x]^4,x]

[Out]

x/16 + (Cos[x]*Sin[x])/16 - (Cos[x]^3*Sin[x])/8 - (Cos[x]^3*Sin[x]^3)/6

Rule 2568

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> -Simp[(a*(b*Cos[e
+ f*x])^(n + 1)*(a*Sin[e + f*x])^(m - 1))/(b*f*(m + n)), x] + Dist[(a^2*(m - 1))/(m + n), Int[(b*Cos[e + f*x])
^n*(a*Sin[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && NeQ[m + n, 0] && IntegersQ[2*
m, 2*n]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \cos ^2(x) \sin ^4(x) \, dx &=-\frac{1}{6} \cos ^3(x) \sin ^3(x)+\frac{1}{2} \int \cos ^2(x) \sin ^2(x) \, dx\\ &=-\frac{1}{8} \cos ^3(x) \sin (x)-\frac{1}{6} \cos ^3(x) \sin ^3(x)+\frac{1}{8} \int \cos ^2(x) \, dx\\ &=\frac{1}{16} \cos (x) \sin (x)-\frac{1}{8} \cos ^3(x) \sin (x)-\frac{1}{6} \cos ^3(x) \sin ^3(x)+\frac{\int 1 \, dx}{16}\\ &=\frac{x}{16}+\frac{1}{16} \cos (x) \sin (x)-\frac{1}{8} \cos ^3(x) \sin (x)-\frac{1}{6} \cos ^3(x) \sin ^3(x)\\ \end{align*}

Mathematica [A]  time = 0.0074607, size = 30, normalized size = 0.83 $\frac{x}{16}-\frac{1}{64} \sin (2 x)-\frac{1}{64} \sin (4 x)+\frac{1}{192} \sin (6 x)$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Cos[x]^2*Sin[x]^4,x]

[Out]

x/16 - Sin[2*x]/64 - Sin[4*x]/64 + Sin[6*x]/192

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 29, normalized size = 0.8 \begin{align*}{\frac{x}{16}}+{\frac{\cos \left ( x \right ) \sin \left ( x \right ) }{16}}-{\frac{ \left ( \cos \left ( x \right ) \right ) ^{3}\sin \left ( x \right ) }{8}}-{\frac{ \left ( \cos \left ( x \right ) \right ) ^{3} \left ( \sin \left ( x \right ) \right ) ^{3}}{6}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(cos(x)^2*sin(x)^4,x)

[Out]

1/16*x+1/16*cos(x)*sin(x)-1/8*cos(x)^3*sin(x)-1/6*cos(x)^3*sin(x)^3

________________________________________________________________________________________

Maxima [A]  time = 0.937497, size = 24, normalized size = 0.67 \begin{align*} -\frac{1}{48} \, \sin \left (2 \, x\right )^{3} + \frac{1}{16} \, x - \frac{1}{64} \, \sin \left (4 \, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)^2*sin(x)^4,x, algorithm="maxima")

[Out]

-1/48*sin(2*x)^3 + 1/16*x - 1/64*sin(4*x)

________________________________________________________________________________________

Fricas [A]  time = 2.01846, size = 81, normalized size = 2.25 \begin{align*} \frac{1}{48} \,{\left (8 \, \cos \left (x\right )^{5} - 14 \, \cos \left (x\right )^{3} + 3 \, \cos \left (x\right )\right )} \sin \left (x\right ) + \frac{1}{16} \, x \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)^2*sin(x)^4,x, algorithm="fricas")

[Out]

1/48*(8*cos(x)^5 - 14*cos(x)^3 + 3*cos(x))*sin(x) + 1/16*x

________________________________________________________________________________________

Sympy [A]  time = 0.061066, size = 31, normalized size = 0.86 \begin{align*} \frac{x}{16} + \frac{\sin ^{5}{\left (x \right )} \cos{\left (x \right )}}{6} - \frac{\sin ^{3}{\left (x \right )} \cos{\left (x \right )}}{24} - \frac{\sin{\left (x \right )} \cos{\left (x \right )}}{16} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)**2*sin(x)**4,x)

[Out]

x/16 + sin(x)**5*cos(x)/6 - sin(x)**3*cos(x)/24 - sin(x)*cos(x)/16

________________________________________________________________________________________

Giac [A]  time = 1.06472, size = 30, normalized size = 0.83 \begin{align*} \frac{1}{16} \, x + \frac{1}{192} \, \sin \left (6 \, x\right ) - \frac{1}{64} \, \sin \left (4 \, x\right ) - \frac{1}{64} \, \sin \left (2 \, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)^2*sin(x)^4,x, algorithm="giac")

[Out]

1/16*x + 1/192*sin(6*x) - 1/64*sin(4*x) - 1/64*sin(2*x)