### 3.343 $$\int e^{-3 x} \cos (4 x) \, dx$$

Optimal. Leaf size=27 $\frac{4}{25} e^{-3 x} \sin (4 x)-\frac{3}{25} e^{-3 x} \cos (4 x)$

[Out]

(-3*Cos[4*x])/(25*E^(3*x)) + (4*Sin[4*x])/(25*E^(3*x))

________________________________________________________________________________________

Rubi [A]  time = 0.0096246, antiderivative size = 27, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 10, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.1, Rules used = {4433} $\frac{4}{25} e^{-3 x} \sin (4 x)-\frac{3}{25} e^{-3 x} \cos (4 x)$

Antiderivative was successfully veriﬁed.

[In]

Int[Cos[4*x]/E^(3*x),x]

[Out]

(-3*Cos[4*x])/(25*E^(3*x)) + (4*Sin[4*x])/(25*E^(3*x))

Rule 4433

Int[Cos[(d_.) + (e_.)*(x_)]*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[(b*c*Log[F]*F^(c*(a + b*x))*C
os[d + e*x])/(e^2 + b^2*c^2*Log[F]^2), x] + Simp[(e*F^(c*(a + b*x))*Sin[d + e*x])/(e^2 + b^2*c^2*Log[F]^2), x]
/; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2 + b^2*c^2*Log[F]^2, 0]

Rubi steps

\begin{align*} \int e^{-3 x} \cos (4 x) \, dx &=-\frac{3}{25} e^{-3 x} \cos (4 x)+\frac{4}{25} e^{-3 x} \sin (4 x)\\ \end{align*}

Mathematica [A]  time = 0.0266588, size = 22, normalized size = 0.81 $\frac{1}{25} e^{-3 x} (4 \sin (4 x)-3 \cos (4 x))$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Cos[4*x]/E^(3*x),x]

[Out]

(-3*Cos[4*x] + 4*Sin[4*x])/(25*E^(3*x))

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 22, normalized size = 0.8 \begin{align*} -{\frac{3\,{{\rm e}^{-3\,x}}\cos \left ( 4\,x \right ) }{25}}+{\frac{4\,{{\rm e}^{-3\,x}}\sin \left ( 4\,x \right ) }{25}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(cos(4*x)/exp(3*x),x)

[Out]

-3/25*exp(-3*x)*cos(4*x)+4/25*exp(-3*x)*sin(4*x)

________________________________________________________________________________________

Maxima [A]  time = 0.93744, size = 26, normalized size = 0.96 \begin{align*} -\frac{1}{25} \,{\left (3 \, \cos \left (4 \, x\right ) - 4 \, \sin \left (4 \, x\right )\right )} e^{\left (-3 \, x\right )} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(4*x)/exp(3*x),x, algorithm="maxima")

[Out]

-1/25*(3*cos(4*x) - 4*sin(4*x))*e^(-3*x)

________________________________________________________________________________________

Fricas [A]  time = 1.87236, size = 68, normalized size = 2.52 \begin{align*} -\frac{3}{25} \, \cos \left (4 \, x\right ) e^{\left (-3 \, x\right )} + \frac{4}{25} \, e^{\left (-3 \, x\right )} \sin \left (4 \, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(4*x)/exp(3*x),x, algorithm="fricas")

[Out]

-3/25*cos(4*x)*e^(-3*x) + 4/25*e^(-3*x)*sin(4*x)

________________________________________________________________________________________

Sympy [A]  time = 0.458763, size = 26, normalized size = 0.96 \begin{align*} \frac{4 e^{- 3 x} \sin{\left (4 x \right )}}{25} - \frac{3 e^{- 3 x} \cos{\left (4 x \right )}}{25} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(4*x)/exp(3*x),x)

[Out]

4*exp(-3*x)*sin(4*x)/25 - 3*exp(-3*x)*cos(4*x)/25

________________________________________________________________________________________

Giac [A]  time = 1.05248, size = 26, normalized size = 0.96 \begin{align*} -\frac{1}{25} \,{\left (3 \, \cos \left (4 \, x\right ) - 4 \, \sin \left (4 \, x\right )\right )} e^{\left (-3 \, x\right )} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(4*x)/exp(3*x),x, algorithm="giac")

[Out]

-1/25*(3*cos(4*x) - 4*sin(4*x))*e^(-3*x)