3.220 \(\int \frac{1}{-\frac{1}{\sqrt [3]{x}}+\sqrt{x}} \, dx\)

Optimal. Leaf size=200 \[ 2 \sqrt{x}+\frac{6}{5} \log \left (1-\sqrt [6]{x}\right )-\frac{3}{10} \left (1+\sqrt{5}\right ) \log \left (2 \sqrt [3]{x}-\sqrt{5} \sqrt [6]{x}+\sqrt [6]{x}+2\right )-\frac{3}{10} \left (1-\sqrt{5}\right ) \log \left (2 \sqrt [3]{x}+\sqrt{5} \sqrt [6]{x}+\sqrt [6]{x}+2\right )+\frac{3}{5} \sqrt{2 \left (5-\sqrt{5}\right )} \tan ^{-1}\left (\frac{4 \sqrt [6]{x}-\sqrt{5}+1}{\sqrt{2 \left (5+\sqrt{5}\right )}}\right )-\frac{3}{5} \sqrt{2 \left (5+\sqrt{5}\right )} \tan ^{-1}\left (\frac{1}{2} \sqrt{\frac{1}{10} \left (5+\sqrt{5}\right )} \left (4 \sqrt [6]{x}+\sqrt{5}+1\right )\right ) \]

[Out]

2*Sqrt[x] + (3*Sqrt[2*(5 - Sqrt[5])]*ArcTan[(1 - Sqrt[5] + 4*x^(1/6))/Sqrt[2*(5 + Sqrt[5])]])/5 - (3*Sqrt[2*(5
 + Sqrt[5])]*ArcTan[(Sqrt[(5 + Sqrt[5])/10]*(1 + Sqrt[5] + 4*x^(1/6)))/2])/5 + (6*Log[1 - x^(1/6)])/5 - (3*(1
+ Sqrt[5])*Log[2 + x^(1/6) - Sqrt[5]*x^(1/6) + 2*x^(1/3)])/10 - (3*(1 - Sqrt[5])*Log[2 + x^(1/6) + Sqrt[5]*x^(
1/6) + 2*x^(1/3)])/10

________________________________________________________________________________________

Rubi [A]  time = 0.377868, antiderivative size = 200, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 9, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.6, Rules used = {1593, 341, 321, 294, 634, 618, 204, 628, 31} \[ 2 \sqrt{x}+\frac{6}{5} \log \left (1-\sqrt [6]{x}\right )-\frac{3}{10} \left (1+\sqrt{5}\right ) \log \left (2 \sqrt [3]{x}-\sqrt{5} \sqrt [6]{x}+\sqrt [6]{x}+2\right )-\frac{3}{10} \left (1-\sqrt{5}\right ) \log \left (2 \sqrt [3]{x}+\sqrt{5} \sqrt [6]{x}+\sqrt [6]{x}+2\right )+\frac{3}{5} \sqrt{2 \left (5-\sqrt{5}\right )} \tan ^{-1}\left (\frac{4 \sqrt [6]{x}-\sqrt{5}+1}{\sqrt{2 \left (5+\sqrt{5}\right )}}\right )-\frac{3}{5} \sqrt{2 \left (5+\sqrt{5}\right )} \tan ^{-1}\left (\frac{1}{2} \sqrt{\frac{1}{10} \left (5+\sqrt{5}\right )} \left (4 \sqrt [6]{x}+\sqrt{5}+1\right )\right ) \]

Antiderivative was successfully verified.

[In]

Int[(-x^(-1/3) + Sqrt[x])^(-1),x]

[Out]

2*Sqrt[x] + (3*Sqrt[2*(5 - Sqrt[5])]*ArcTan[(1 - Sqrt[5] + 4*x^(1/6))/Sqrt[2*(5 + Sqrt[5])]])/5 - (3*Sqrt[2*(5
 + Sqrt[5])]*ArcTan[(Sqrt[(5 + Sqrt[5])/10]*(1 + Sqrt[5] + 4*x^(1/6)))/2])/5 + (6*Log[1 - x^(1/6)])/5 - (3*(1
+ Sqrt[5])*Log[2 + x^(1/6) - Sqrt[5]*x^(1/6) + 2*x^(1/3)])/10 - (3*(1 - Sqrt[5])*Log[2 + x^(1/6) + Sqrt[5]*x^(
1/6) + 2*x^(1/3)])/10

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 341

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[n]}, Dist[k, Subst[Int[x^(k*(
m + 1) - 1)*(a + b*x^(k*n))^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, m, p}, x] && FractionQ[n]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 294

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Module[{r = Numerator[Rt[-(a/b), n]], s = Denominator[Rt
[-(a/b), n]], k, u}, Simp[u = Int[(r*Cos[((2*k - 1)*m*Pi)/n] + s*Cos[((2*k - 1)*(m + 1)*Pi)/n]*x)/(r^2 + 2*r*s
*Cos[((2*k - 1)*Pi)/n]*x + s^2*x^2), x]; (r^(m + 1)*Int[1/(r - s*x), x])/(a*n*s^m) - Dist[(2*(-r)^(m + 1))/(a*
n*s^m), Sum[u, {k, 1, (n - 1)/2}], x], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 1)/2, 0] && IGtQ[m, 0] && LtQ[m, n
 - 1] && NegQ[a/b]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{1}{-\frac{1}{\sqrt [3]{x}}+\sqrt{x}} \, dx &=\int \frac{\sqrt [3]{x}}{-1+x^{5/6}} \, dx\\ &=6 \operatorname{Subst}\left (\int \frac{x^7}{-1+x^5} \, dx,x,\sqrt [6]{x}\right )\\ &=2 \sqrt{x}+6 \operatorname{Subst}\left (\int \frac{x^2}{-1+x^5} \, dx,x,\sqrt [6]{x}\right )\\ &=2 \sqrt{x}-\frac{6}{5} \operatorname{Subst}\left (\int \frac{1}{1-x} \, dx,x,\sqrt [6]{x}\right )-\frac{12}{5} \operatorname{Subst}\left (\int \frac{\frac{1}{4} \left (-1-\sqrt{5}\right )+\frac{1}{4} \left (1+\sqrt{5}\right ) x}{1+\frac{1}{2} \left (1-\sqrt{5}\right ) x+x^2} \, dx,x,\sqrt [6]{x}\right )-\frac{12}{5} \operatorname{Subst}\left (\int \frac{\frac{1}{4} \left (-1+\sqrt{5}\right )+\frac{1}{4} \left (1-\sqrt{5}\right ) x}{1+\frac{1}{2} \left (1+\sqrt{5}\right ) x+x^2} \, dx,x,\sqrt [6]{x}\right )\\ &=2 \sqrt{x}+\frac{6}{5} \log \left (1-\sqrt [6]{x}\right )+\frac{3 \operatorname{Subst}\left (\int \frac{1}{1+\frac{1}{2} \left (1-\sqrt{5}\right ) x+x^2} \, dx,x,\sqrt [6]{x}\right )}{\sqrt{5}}-\frac{3 \operatorname{Subst}\left (\int \frac{1}{1+\frac{1}{2} \left (1+\sqrt{5}\right ) x+x^2} \, dx,x,\sqrt [6]{x}\right )}{\sqrt{5}}-\frac{1}{10} \left (3 \left (1-\sqrt{5}\right )\right ) \operatorname{Subst}\left (\int \frac{\frac{1}{2} \left (1+\sqrt{5}\right )+2 x}{1+\frac{1}{2} \left (1+\sqrt{5}\right ) x+x^2} \, dx,x,\sqrt [6]{x}\right )-\frac{1}{10} \left (3 \left (1+\sqrt{5}\right )\right ) \operatorname{Subst}\left (\int \frac{\frac{1}{2} \left (1-\sqrt{5}\right )+2 x}{1+\frac{1}{2} \left (1-\sqrt{5}\right ) x+x^2} \, dx,x,\sqrt [6]{x}\right )\\ &=2 \sqrt{x}+\frac{6}{5} \log \left (1-\sqrt [6]{x}\right )-\frac{3}{10} \left (1+\sqrt{5}\right ) \log \left (2+\sqrt [6]{x}-\sqrt{5} \sqrt [6]{x}+2 \sqrt [3]{x}\right )-\frac{3}{10} \left (1-\sqrt{5}\right ) \log \left (2+\sqrt [6]{x}+\sqrt{5} \sqrt [6]{x}+2 \sqrt [3]{x}\right )-\frac{6 \operatorname{Subst}\left (\int \frac{1}{\frac{1}{2} \left (-5-\sqrt{5}\right )-x^2} \, dx,x,\frac{1}{2} \left (1-\sqrt{5}\right )+2 \sqrt [6]{x}\right )}{\sqrt{5}}+\frac{6 \operatorname{Subst}\left (\int \frac{1}{\frac{1}{2} \left (-5+\sqrt{5}\right )-x^2} \, dx,x,\frac{1}{2} \left (1+\sqrt{5}\right )+2 \sqrt [6]{x}\right )}{\sqrt{5}}\\ &=2 \sqrt{x}+6 \sqrt{\frac{2}{5 \left (5+\sqrt{5}\right )}} \tan ^{-1}\left (\frac{1-\sqrt{5}+4 \sqrt [6]{x}}{\sqrt{2 \left (5+\sqrt{5}\right )}}\right )-\frac{3}{5} \sqrt{2 \left (5+\sqrt{5}\right )} \tan ^{-1}\left (\frac{1}{2} \sqrt{\frac{1}{10} \left (5+\sqrt{5}\right )} \left (1+\sqrt{5}+4 \sqrt [6]{x}\right )\right )+\frac{6}{5} \log \left (1-\sqrt [6]{x}\right )-\frac{3}{10} \left (1+\sqrt{5}\right ) \log \left (2+\sqrt [6]{x}-\sqrt{5} \sqrt [6]{x}+2 \sqrt [3]{x}\right )-\frac{3}{10} \left (1-\sqrt{5}\right ) \log \left (2+\sqrt [6]{x}+\sqrt{5} \sqrt [6]{x}+2 \sqrt [3]{x}\right )\\ \end{align*}

Mathematica [C]  time = 0.0053364, size = 22, normalized size = 0.11 \[ -2 \sqrt{x} \left (\text{Hypergeometric2F1}\left (\frac{3}{5},1,\frac{8}{5},x^{5/6}\right )-1\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(-x^(-1/3) + Sqrt[x])^(-1),x]

[Out]

-2*Sqrt[x]*(-1 + Hypergeometric2F1[3/5, 1, 8/5, x^(5/6)])

________________________________________________________________________________________

Maple [A]  time = 0.033, size = 175, normalized size = 0.9 \begin{align*} 2\,\sqrt{x}-{\frac{3}{10}\ln \left ( 2+\sqrt [6]{x}+2\,\sqrt [3]{x}+\sqrt [6]{x}\sqrt{5} \right ) }+{\frac{3\,\sqrt{5}}{10}\ln \left ( 2+\sqrt [6]{x}+2\,\sqrt [3]{x}+\sqrt [6]{x}\sqrt{5} \right ) }-{\frac{12\,\sqrt{5}}{5\,\sqrt{10-2\,\sqrt{5}}}\arctan \left ({\frac{1}{\sqrt{10-2\,\sqrt{5}}} \left ( 1+4\,\sqrt [6]{x}+\sqrt{5} \right ) } \right ) }-{\frac{3\,\sqrt{5}}{10}\ln \left ( 2+\sqrt [6]{x}+2\,\sqrt [3]{x}-\sqrt [6]{x}\sqrt{5} \right ) }-{\frac{3}{10}\ln \left ( 2+\sqrt [6]{x}+2\,\sqrt [3]{x}-\sqrt [6]{x}\sqrt{5} \right ) }+{\frac{12\,\sqrt{5}}{5\,\sqrt{10+2\,\sqrt{5}}}\arctan \left ({\frac{1}{\sqrt{10+2\,\sqrt{5}}} \left ( 1+4\,\sqrt [6]{x}-\sqrt{5} \right ) } \right ) }+{\frac{6}{5}\ln \left ( -1+\sqrt [6]{x} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-1/x^(1/3)+x^(1/2)),x)

[Out]

2*x^(1/2)-3/10*ln(2+x^(1/6)+2*x^(1/3)+x^(1/6)*5^(1/2))+3/10*ln(2+x^(1/6)+2*x^(1/3)+x^(1/6)*5^(1/2))*5^(1/2)-12
/5/(10-2*5^(1/2))^(1/2)*arctan((1+4*x^(1/6)+5^(1/2))/(10-2*5^(1/2))^(1/2))*5^(1/2)-3/10*ln(2+x^(1/6)+2*x^(1/3)
-x^(1/6)*5^(1/2))*5^(1/2)-3/10*ln(2+x^(1/6)+2*x^(1/3)-x^(1/6)*5^(1/2))+12/5/(10+2*5^(1/2))^(1/2)*arctan((1+4*x
^(1/6)-5^(1/2))/(10+2*5^(1/2))^(1/2))*5^(1/2)+6/5*ln(-1+x^(1/6))

________________________________________________________________________________________

Maxima [B]  time = 1.43988, size = 367, normalized size = 1.84 \begin{align*} -\frac{6}{5} \, \left (-1\right )^{\frac{3}{5}} \log \left (\left (-1\right )^{\frac{1}{5}} + x^{\frac{1}{6}}\right ) - \frac{6 \, \sqrt{5} \left (-1\right )^{\frac{3}{5}} \log \left (\frac{\sqrt{5} \left (-1\right )^{\frac{1}{5}} + \left (-1\right )^{\frac{1}{5}} \sqrt{2 \, \sqrt{5} - 10} + \left (-1\right )^{\frac{1}{5}} - 4 \, x^{\frac{1}{6}}}{\sqrt{5} \left (-1\right )^{\frac{1}{5}} - \left (-1\right )^{\frac{1}{5}} \sqrt{2 \, \sqrt{5} - 10} + \left (-1\right )^{\frac{1}{5}} - 4 \, x^{\frac{1}{6}}}\right )}{5 \, \sqrt{2 \, \sqrt{5} - 10}} + \frac{6 \, \sqrt{5} \left (-1\right )^{\frac{3}{5}} \log \left (\frac{\sqrt{5} \left (-1\right )^{\frac{1}{5}} - \left (-1\right )^{\frac{1}{5}} \sqrt{-2 \, \sqrt{5} - 10} - \left (-1\right )^{\frac{1}{5}} + 4 \, x^{\frac{1}{6}}}{\sqrt{5} \left (-1\right )^{\frac{1}{5}} + \left (-1\right )^{\frac{1}{5}} \sqrt{-2 \, \sqrt{5} - 10} - \left (-1\right )^{\frac{1}{5}} + 4 \, x^{\frac{1}{6}}}\right )}{5 \, \sqrt{-2 \, \sqrt{5} - 10}} + 2 \, \sqrt{x} + \frac{6 \, \log \left (-x^{\frac{1}{6}}{\left (\sqrt{5} \left (-1\right )^{\frac{1}{5}} + \left (-1\right )^{\frac{1}{5}}\right )} + 2 \, \left (-1\right )^{\frac{2}{5}} + 2 \, x^{\frac{1}{3}}\right )}{5 \,{\left (\sqrt{5} \left (-1\right )^{\frac{2}{5}} + \left (-1\right )^{\frac{2}{5}}\right )}} - \frac{6 \, \log \left (x^{\frac{1}{6}}{\left (\sqrt{5} \left (-1\right )^{\frac{1}{5}} - \left (-1\right )^{\frac{1}{5}}\right )} + 2 \, \left (-1\right )^{\frac{2}{5}} + 2 \, x^{\frac{1}{3}}\right )}{5 \,{\left (\sqrt{5} \left (-1\right )^{\frac{2}{5}} - \left (-1\right )^{\frac{2}{5}}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-1/x^(1/3)+x^(1/2)),x, algorithm="maxima")

[Out]

-6/5*(-1)^(3/5)*log((-1)^(1/5) + x^(1/6)) - 6/5*sqrt(5)*(-1)^(3/5)*log((sqrt(5)*(-1)^(1/5) + (-1)^(1/5)*sqrt(2
*sqrt(5) - 10) + (-1)^(1/5) - 4*x^(1/6))/(sqrt(5)*(-1)^(1/5) - (-1)^(1/5)*sqrt(2*sqrt(5) - 10) + (-1)^(1/5) -
4*x^(1/6)))/sqrt(2*sqrt(5) - 10) + 6/5*sqrt(5)*(-1)^(3/5)*log((sqrt(5)*(-1)^(1/5) - (-1)^(1/5)*sqrt(-2*sqrt(5)
 - 10) - (-1)^(1/5) + 4*x^(1/6))/(sqrt(5)*(-1)^(1/5) + (-1)^(1/5)*sqrt(-2*sqrt(5) - 10) - (-1)^(1/5) + 4*x^(1/
6)))/sqrt(-2*sqrt(5) - 10) + 2*sqrt(x) + 6/5*log(-x^(1/6)*(sqrt(5)*(-1)^(1/5) + (-1)^(1/5)) + 2*(-1)^(2/5) + 2
*x^(1/3))/(sqrt(5)*(-1)^(2/5) + (-1)^(2/5)) - 6/5*log(x^(1/6)*(sqrt(5)*(-1)^(1/5) - (-1)^(1/5)) + 2*(-1)^(2/5)
 + 2*x^(1/3))/(sqrt(5)*(-1)^(2/5) - (-1)^(2/5))

________________________________________________________________________________________

Fricas [B]  time = 12.9079, size = 2130, normalized size = 10.65 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-1/x^(1/3)+x^(1/2)),x, algorithm="fricas")

[Out]

1/10*(3*sqrt(5) - sqrt(-27/4*(sqrt(2)*sqrt(sqrt(5) - 5) + sqrt(5) + 1)^2 + 9/2*(sqrt(2)*sqrt(sqrt(5) - 5) + sq
rt(5) - 3)*(sqrt(2)*sqrt(sqrt(5) - 5) - sqrt(5) - 1) - 27/4*(sqrt(2)*sqrt(sqrt(5) - 5) - sqrt(5) - 1)^2 + 18*s
qrt(2)*sqrt(sqrt(5) - 5) + 18*sqrt(5) - 90) - 3)*log(9/4*(sqrt(2)*sqrt(sqrt(5) - 5) + sqrt(5) + 1)^2 + 9/4*(sq
rt(2)*sqrt(sqrt(5) - 5) - sqrt(5) - 1)^2 + 3*sqrt(-27/4*(sqrt(2)*sqrt(sqrt(5) - 5) + sqrt(5) + 1)^2 + 9/2*(sqr
t(2)*sqrt(sqrt(5) - 5) + sqrt(5) - 3)*(sqrt(2)*sqrt(sqrt(5) - 5) - sqrt(5) - 1) - 27/4*(sqrt(2)*sqrt(sqrt(5) -
 5) - sqrt(5) - 1)^2 + 18*sqrt(2)*sqrt(sqrt(5) - 5) + 18*sqrt(5) - 90)*(sqrt(5) - 1) + 72*x^(1/6) + 36) + 1/10
*(3*sqrt(5) + sqrt(-27/4*(sqrt(2)*sqrt(sqrt(5) - 5) + sqrt(5) + 1)^2 + 9/2*(sqrt(2)*sqrt(sqrt(5) - 5) + sqrt(5
) - 3)*(sqrt(2)*sqrt(sqrt(5) - 5) - sqrt(5) - 1) - 27/4*(sqrt(2)*sqrt(sqrt(5) - 5) - sqrt(5) - 1)^2 + 18*sqrt(
2)*sqrt(sqrt(5) - 5) + 18*sqrt(5) - 90) - 3)*log(9/4*(sqrt(2)*sqrt(sqrt(5) - 5) + sqrt(5) + 1)^2 + 9/4*(sqrt(2
)*sqrt(sqrt(5) - 5) - sqrt(5) - 1)^2 - 3*sqrt(-27/4*(sqrt(2)*sqrt(sqrt(5) - 5) + sqrt(5) + 1)^2 + 9/2*(sqrt(2)
*sqrt(sqrt(5) - 5) + sqrt(5) - 3)*(sqrt(2)*sqrt(sqrt(5) - 5) - sqrt(5) - 1) - 27/4*(sqrt(2)*sqrt(sqrt(5) - 5)
- sqrt(5) - 1)^2 + 18*sqrt(2)*sqrt(sqrt(5) - 5) + 18*sqrt(5) - 90)*(sqrt(5) - 1) + 72*x^(1/6) + 36) - 3/10*(sq
rt(2)*sqrt(sqrt(5) - 5) + sqrt(5) + 1)*log(-9/4*(sqrt(2)*sqrt(sqrt(5) - 5) + sqrt(5) + 1)^2 + 36*x^(1/6)) + 3/
10*(sqrt(2)*sqrt(sqrt(5) - 5) - sqrt(5) - 1)*log(-9/4*(sqrt(2)*sqrt(sqrt(5) - 5) - sqrt(5) - 1)^2 + 36*x^(1/6)
) + 2*sqrt(x) + 6/5*log(x^(1/6) - 1)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt [3]{x}}{\left (\sqrt [6]{x} - 1\right ) \left (\sqrt [6]{x} + x^{\frac{2}{3}} + \sqrt [3]{x} + \sqrt{x} + 1\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-1/x**(1/3)+x**(1/2)),x)

[Out]

Integral(x**(1/3)/((x**(1/6) - 1)*(x**(1/6) + x**(2/3) + x**(1/3) + sqrt(x) + 1)), x)

________________________________________________________________________________________

Giac [A]  time = 1.39809, size = 188, normalized size = 0.94 \begin{align*} \frac{3}{5} \, \sqrt{-2 \, \sqrt{5} + 10} \arctan \left (-\frac{\sqrt{5} - 4 \, x^{\frac{1}{6}} - 1}{\sqrt{2 \, \sqrt{5} + 10}}\right ) - \frac{3}{5} \, \sqrt{2 \, \sqrt{5} + 10} \arctan \left (\frac{\sqrt{5} + 4 \, x^{\frac{1}{6}} + 1}{\sqrt{-2 \, \sqrt{5} + 10}}\right ) + \frac{3}{10} \, \sqrt{5} \log \left (\frac{1}{2} \, x^{\frac{1}{6}}{\left (\sqrt{5} + 1\right )} + x^{\frac{1}{3}} + 1\right ) - \frac{3}{10} \, \sqrt{5} \log \left (-\frac{1}{2} \, x^{\frac{1}{6}}{\left (\sqrt{5} - 1\right )} + x^{\frac{1}{3}} + 1\right ) + 2 \, \sqrt{x} - \frac{3}{10} \, \log \left (x^{\frac{2}{3}} + \sqrt{x} + x^{\frac{1}{3}} + x^{\frac{1}{6}} + 1\right ) + \frac{6}{5} \, \log \left ({\left | x^{\frac{1}{6}} - 1 \right |}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-1/x^(1/3)+x^(1/2)),x, algorithm="giac")

[Out]

3/5*sqrt(-2*sqrt(5) + 10)*arctan(-(sqrt(5) - 4*x^(1/6) - 1)/sqrt(2*sqrt(5) + 10)) - 3/5*sqrt(2*sqrt(5) + 10)*a
rctan((sqrt(5) + 4*x^(1/6) + 1)/sqrt(-2*sqrt(5) + 10)) + 3/10*sqrt(5)*log(1/2*x^(1/6)*(sqrt(5) + 1) + x^(1/3)
+ 1) - 3/10*sqrt(5)*log(-1/2*x^(1/6)*(sqrt(5) - 1) + x^(1/3) + 1) + 2*sqrt(x) - 3/10*log(x^(2/3) + sqrt(x) + x
^(1/3) + x^(1/6) + 1) + 6/5*log(abs(x^(1/6) - 1))