3.49 \(\int \frac{x}{1+x^3} \, dx\)

Optimal. Leaf size=41 \[ \frac{1}{6} \log \left (x^2-x+1\right )-\frac{1}{3} \log (x+1)-\frac{\tan ^{-1}\left (\frac{1-2 x}{\sqrt{3}}\right )}{\sqrt{3}} \]

[Out]

-(ArcTan[(1 - 2*x)/Sqrt[3]]/Sqrt[3]) - Log[1 + x]/3 + Log[1 - x + x^2]/6

________________________________________________________________________________________

Rubi [A]  time = 0.0220315, antiderivative size = 41, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 9, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.667, Rules used = {292, 31, 634, 618, 204, 628} \[ \frac{1}{6} \log \left (x^2-x+1\right )-\frac{1}{3} \log (x+1)-\frac{\tan ^{-1}\left (\frac{1-2 x}{\sqrt{3}}\right )}{\sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Int[x/(1 + x^3),x]

[Out]

-(ArcTan[(1 - 2*x)/Sqrt[3]]/Sqrt[3]) - Log[1 + x]/3 + Log[1 - x + x^2]/6

Rule 292

Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> -Dist[(3*Rt[a, 3]*Rt[b, 3])^(-1), Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Dist[1/(3*Rt[a, 3]*Rt[b, 3]), Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3
]^2*x^2), x], x] /; FreeQ[{a, b}, x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{x}{1+x^3} \, dx &=-\left (\frac{1}{3} \int \frac{1}{1+x} \, dx\right )+\frac{1}{3} \int \frac{1+x}{1-x+x^2} \, dx\\ &=-\frac{1}{3} \log (1+x)+\frac{1}{6} \int \frac{-1+2 x}{1-x+x^2} \, dx+\frac{1}{2} \int \frac{1}{1-x+x^2} \, dx\\ &=-\frac{1}{3} \log (1+x)+\frac{1}{6} \log \left (1-x+x^2\right )-\operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,-1+2 x\right )\\ &=\frac{\tan ^{-1}\left (\frac{-1+2 x}{\sqrt{3}}\right )}{\sqrt{3}}-\frac{1}{3} \log (1+x)+\frac{1}{6} \log \left (1-x+x^2\right )\\ \end{align*}

Mathematica [A]  time = 0.0085541, size = 40, normalized size = 0.98 \[ \frac{1}{6} \log \left (x^2-x+1\right )-\frac{1}{3} \log (x+1)+\frac{\tan ^{-1}\left (\frac{2 x-1}{\sqrt{3}}\right )}{\sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Integrate[x/(1 + x^3),x]

[Out]

ArcTan[(-1 + 2*x)/Sqrt[3]]/Sqrt[3] - Log[1 + x]/3 + Log[1 - x + x^2]/6

________________________________________________________________________________________

Maple [A]  time = 0., size = 35, normalized size = 0.9 \begin{align*} -{\frac{\ln \left ( 1+x \right ) }{3}}+{\frac{\ln \left ({x}^{2}-x+1 \right ) }{6}}+{\frac{\sqrt{3}}{3}\arctan \left ({\frac{ \left ( 2\,x-1 \right ) \sqrt{3}}{3}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(x^3+1),x)

[Out]

-1/3*ln(1+x)+1/6*ln(x^2-x+1)+1/3*3^(1/2)*arctan(1/3*(2*x-1)*3^(1/2))

________________________________________________________________________________________

Maxima [A]  time = 1.40549, size = 46, normalized size = 1.12 \begin{align*} \frac{1}{3} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x - 1\right )}\right ) + \frac{1}{6} \, \log \left (x^{2} - x + 1\right ) - \frac{1}{3} \, \log \left (x + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(x^3+1),x, algorithm="maxima")

[Out]

1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) + 1/6*log(x^2 - x + 1) - 1/3*log(x + 1)

________________________________________________________________________________________

Fricas [A]  time = 1.9814, size = 112, normalized size = 2.73 \begin{align*} \frac{1}{3} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x - 1\right )}\right ) + \frac{1}{6} \, \log \left (x^{2} - x + 1\right ) - \frac{1}{3} \, \log \left (x + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(x^3+1),x, algorithm="fricas")

[Out]

1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) + 1/6*log(x^2 - x + 1) - 1/3*log(x + 1)

________________________________________________________________________________________

Sympy [A]  time = 0.121567, size = 41, normalized size = 1. \begin{align*} - \frac{\log{\left (x + 1 \right )}}{3} + \frac{\log{\left (x^{2} - x + 1 \right )}}{6} + \frac{\sqrt{3} \operatorname{atan}{\left (\frac{2 \sqrt{3} x}{3} - \frac{\sqrt{3}}{3} \right )}}{3} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(x**3+1),x)

[Out]

-log(x + 1)/3 + log(x**2 - x + 1)/6 + sqrt(3)*atan(2*sqrt(3)*x/3 - sqrt(3)/3)/3

________________________________________________________________________________________

Giac [A]  time = 1.0722, size = 47, normalized size = 1.15 \begin{align*} \frac{1}{3} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x - 1\right )}\right ) + \frac{1}{6} \, \log \left (x^{2} - x + 1\right ) - \frac{1}{3} \, \log \left ({\left | x + 1 \right |}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(x^3+1),x, algorithm="giac")

[Out]

1/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) + 1/6*log(x^2 - x + 1) - 1/3*log(abs(x + 1))