3.176 \(\int \sqrt{a+b x} \sqrt{c+d x} \, dx\)

Optimal. Leaf size=116 \[ -\frac{(b c-a d)^2 \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{4 b^{3/2} d^{3/2}}+\frac{\sqrt{a+b x} \sqrt{c+d x} (b c-a d)}{4 b d}+\frac{(a+b x)^{3/2} \sqrt{c+d x}}{2 b} \]

[Out]

((b*c - a*d)*Sqrt[a + b*x]*Sqrt[c + d*x])/(4*b*d) + ((a + b*x)^(3/2)*Sqrt[c + d*x])/(2*b) - ((b*c - a*d)^2*Arc
Tanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(4*b^(3/2)*d^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0682431, antiderivative size = 116, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {50, 63, 217, 206} \[ -\frac{(b c-a d)^2 \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{4 b^{3/2} d^{3/2}}+\frac{\sqrt{a+b x} \sqrt{c+d x} (b c-a d)}{4 b d}+\frac{(a+b x)^{3/2} \sqrt{c+d x}}{2 b} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x]*Sqrt[c + d*x],x]

[Out]

((b*c - a*d)*Sqrt[a + b*x]*Sqrt[c + d*x])/(4*b*d) + ((a + b*x)^(3/2)*Sqrt[c + d*x])/(2*b) - ((b*c - a*d)^2*Arc
Tanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(4*b^(3/2)*d^(3/2))

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \sqrt{a+b x} \sqrt{c+d x} \, dx &=\frac{(a+b x)^{3/2} \sqrt{c+d x}}{2 b}+\frac{(b c-a d) \int \frac{\sqrt{a+b x}}{\sqrt{c+d x}} \, dx}{4 b}\\ &=\frac{(b c-a d) \sqrt{a+b x} \sqrt{c+d x}}{4 b d}+\frac{(a+b x)^{3/2} \sqrt{c+d x}}{2 b}-\frac{(b c-a d)^2 \int \frac{1}{\sqrt{a+b x} \sqrt{c+d x}} \, dx}{8 b d}\\ &=\frac{(b c-a d) \sqrt{a+b x} \sqrt{c+d x}}{4 b d}+\frac{(a+b x)^{3/2} \sqrt{c+d x}}{2 b}-\frac{(b c-a d)^2 \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{a d}{b}+\frac{d x^2}{b}}} \, dx,x,\sqrt{a+b x}\right )}{4 b^2 d}\\ &=\frac{(b c-a d) \sqrt{a+b x} \sqrt{c+d x}}{4 b d}+\frac{(a+b x)^{3/2} \sqrt{c+d x}}{2 b}-\frac{(b c-a d)^2 \operatorname{Subst}\left (\int \frac{1}{1-\frac{d x^2}{b}} \, dx,x,\frac{\sqrt{a+b x}}{\sqrt{c+d x}}\right )}{4 b^2 d}\\ &=\frac{(b c-a d) \sqrt{a+b x} \sqrt{c+d x}}{4 b d}+\frac{(a+b x)^{3/2} \sqrt{c+d x}}{2 b}-\frac{(b c-a d)^2 \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b} \sqrt{c+d x}}\right )}{4 b^{3/2} d^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.291796, size = 118, normalized size = 1.02 \[ \frac{b \sqrt{d} \sqrt{a+b x} (c+d x) (a d+b (c+2 d x))-(b c-a d)^{5/2} \sqrt{\frac{b (c+d x)}{b c-a d}} \sinh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x}}{\sqrt{b c-a d}}\right )}{4 b^2 d^{3/2} \sqrt{c+d x}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x]*Sqrt[c + d*x],x]

[Out]

(b*Sqrt[d]*Sqrt[a + b*x]*(c + d*x)*(a*d + b*(c + 2*d*x)) - (b*c - a*d)^(5/2)*Sqrt[(b*(c + d*x))/(b*c - a*d)]*A
rcSinh[(Sqrt[d]*Sqrt[a + b*x])/Sqrt[b*c - a*d]])/(4*b^2*d^(3/2)*Sqrt[c + d*x])

________________________________________________________________________________________

Maple [B]  time = 0.011, size = 305, normalized size = 2.6 \begin{align*}{\frac{1}{2\,d}\sqrt{bx+a} \left ( dx+c \right ) ^{{\frac{3}{2}}}}+{\frac{a}{4\,b}\sqrt{bx+a}\sqrt{dx+c}}-{\frac{c}{4\,d}\sqrt{bx+a}\sqrt{dx+c}}-{\frac{d{a}^{2}}{8\,b}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\ln \left ({ \left ({\frac{ad}{2}}+{\frac{bc}{2}}+bdx \right ){\frac{1}{\sqrt{bd}}}}+\sqrt{bd{x}^{2}+ \left ( ad+bc \right ) x+ac} \right ){\frac{1}{\sqrt{bx+a}}}{\frac{1}{\sqrt{dx+c}}}{\frac{1}{\sqrt{bd}}}}+{\frac{ac}{4}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\ln \left ({ \left ({\frac{ad}{2}}+{\frac{bc}{2}}+bdx \right ){\frac{1}{\sqrt{bd}}}}+\sqrt{bd{x}^{2}+ \left ( ad+bc \right ) x+ac} \right ){\frac{1}{\sqrt{bx+a}}}{\frac{1}{\sqrt{dx+c}}}{\frac{1}{\sqrt{bd}}}}-{\frac{{c}^{2}b}{8\,d}\sqrt{ \left ( bx+a \right ) \left ( dx+c \right ) }\ln \left ({ \left ({\frac{ad}{2}}+{\frac{bc}{2}}+bdx \right ){\frac{1}{\sqrt{bd}}}}+\sqrt{bd{x}^{2}+ \left ( ad+bc \right ) x+ac} \right ){\frac{1}{\sqrt{bx+a}}}{\frac{1}{\sqrt{dx+c}}}{\frac{1}{\sqrt{bd}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(1/2)*(d*x+c)^(1/2),x)

[Out]

1/2/d*(b*x+a)^(1/2)*(d*x+c)^(3/2)+1/4/b*(d*x+c)^(1/2)*(b*x+a)^(1/2)*a-1/4/d*(d*x+c)^(1/2)*(b*x+a)^(1/2)*c-1/8*
d/b*((b*x+a)*(d*x+c))^(1/2)/(d*x+c)^(1/2)/(b*x+a)^(1/2)*ln((1/2*a*d+1/2*b*c+b*d*x)/(b*d)^(1/2)+(b*d*x^2+(a*d+b
*c)*x+a*c)^(1/2))/(b*d)^(1/2)*a^2+1/4*((b*x+a)*(d*x+c))^(1/2)/(d*x+c)^(1/2)/(b*x+a)^(1/2)*ln((1/2*a*d+1/2*b*c+
b*d*x)/(b*d)^(1/2)+(b*d*x^2+(a*d+b*c)*x+a*c)^(1/2))/(b*d)^(1/2)*a*c-1/8/d*((b*x+a)*(d*x+c))^(1/2)/(d*x+c)^(1/2
)/(b*x+a)^(1/2)*ln((1/2*a*d+1/2*b*c+b*d*x)/(b*d)^(1/2)+(b*d*x^2+(a*d+b*c)*x+a*c)^(1/2))/(b*d)^(1/2)*c^2*b

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)*(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.93164, size = 699, normalized size = 6.03 \begin{align*} \left [\frac{{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \sqrt{b d} \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} - 4 \,{\left (2 \, b d x + b c + a d\right )} \sqrt{b d} \sqrt{b x + a} \sqrt{d x + c} + 8 \,{\left (b^{2} c d + a b d^{2}\right )} x\right ) + 4 \,{\left (2 \, b^{2} d^{2} x + b^{2} c d + a b d^{2}\right )} \sqrt{b x + a} \sqrt{d x + c}}{16 \, b^{2} d^{2}}, \frac{{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \sqrt{-b d} \arctan \left (\frac{{\left (2 \, b d x + b c + a d\right )} \sqrt{-b d} \sqrt{b x + a} \sqrt{d x + c}}{2 \,{\left (b^{2} d^{2} x^{2} + a b c d +{\left (b^{2} c d + a b d^{2}\right )} x\right )}}\right ) + 2 \,{\left (2 \, b^{2} d^{2} x + b^{2} c d + a b d^{2}\right )} \sqrt{b x + a} \sqrt{d x + c}}{8 \, b^{2} d^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)*(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/16*((b^2*c^2 - 2*a*b*c*d + a^2*d^2)*sqrt(b*d)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 - 4*(2*b*d*
x + b*c + a*d)*sqrt(b*d)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(b^2*c*d + a*b*d^2)*x) + 4*(2*b^2*d^2*x + b^2*c*d + a
*b*d^2)*sqrt(b*x + a)*sqrt(d*x + c))/(b^2*d^2), 1/8*((b^2*c^2 - 2*a*b*c*d + a^2*d^2)*sqrt(-b*d)*arctan(1/2*(2*
b*d*x + b*c + a*d)*sqrt(-b*d)*sqrt(b*x + a)*sqrt(d*x + c)/(b^2*d^2*x^2 + a*b*c*d + (b^2*c*d + a*b*d^2)*x)) + 2
*(2*b^2*d^2*x + b^2*c*d + a*b*d^2)*sqrt(b*x + a)*sqrt(d*x + c))/(b^2*d^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b x} \sqrt{c + d x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(1/2)*(d*x+c)**(1/2),x)

[Out]

Integral(sqrt(a + b*x)*sqrt(c + d*x), x)

________________________________________________________________________________________

Giac [A]  time = 1.1314, size = 189, normalized size = 1.63 \begin{align*} \frac{{\left (\sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d} \sqrt{b x + a}{\left (\frac{2 \,{\left (b x + a\right )}}{b^{4} d^{2}} + \frac{b c d - a d^{2}}{b^{4} d^{4}}\right )} + \frac{{\left (b^{2} c^{2} - 2 \, a b c d + a^{2} d^{2}\right )} \log \left ({\left | -\sqrt{b d} \sqrt{b x + a} + \sqrt{b^{2} c +{\left (b x + a\right )} b d - a b d} \right |}\right )}{\sqrt{b d} b^{3} d^{3}}\right )}{\left | b \right |}}{96 \, b^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/2)*(d*x+c)^(1/2),x, algorithm="giac")

[Out]

1/96*(sqrt(b^2*c + (b*x + a)*b*d - a*b*d)*sqrt(b*x + a)*(2*(b*x + a)/(b^4*d^2) + (b*c*d - a*d^2)/(b^4*d^4)) +
(b^2*c^2 - 2*a*b*c*d + a^2*d^2)*log(abs(-sqrt(b*d)*sqrt(b*x + a) + sqrt(b^2*c + (b*x + a)*b*d - a*b*d)))/(sqrt
(b*d)*b^3*d^3))*abs(b)/b^3