3.99 \(\int \frac{e^{\tan ^{-1}(x)}}{(1+x^2)^{3/2}} \, dx\)

Optimal. Leaf size=20 \[ \frac{(x+1) e^{\tan ^{-1}(x)}}{2 \sqrt{x^2+1}} \]

[Out]

(E^ArcTan[x]*(1 + x))/(2*Sqrt[1 + x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0230173, antiderivative size = 20, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.071, Rules used = {5069} \[ \frac{(x+1) e^{\tan ^{-1}(x)}}{2 \sqrt{x^2+1}} \]

Antiderivative was successfully verified.

[In]

Int[E^ArcTan[x]/(1 + x^2)^(3/2),x]

[Out]

(E^ArcTan[x]*(1 + x))/(2*Sqrt[1 + x^2])

Rule 5069

Int[E^(ArcTan[(a_.)*(x_)]*(n_.))/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[((n + a*x)*E^(n*ArcTan[a*x]))/
(a*c*(n^2 + 1)*Sqrt[c + d*x^2]), x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] &&  !IntegerQ[I*n]

Rubi steps

\begin{align*} \int \frac{e^{\tan ^{-1}(x)}}{\left (1+x^2\right )^{3/2}} \, dx &=\frac{e^{\tan ^{-1}(x)} (1+x)}{2 \sqrt{1+x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0054082, size = 20, normalized size = 1. \[ \frac{(x+1) e^{\tan ^{-1}(x)}}{2 \sqrt{x^2+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[E^ArcTan[x]/(1 + x^2)^(3/2),x]

[Out]

(E^ArcTan[x]*(1 + x))/(2*Sqrt[1 + x^2])

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 16, normalized size = 0.8 \begin{align*}{\frac{{{\rm e}^{\arctan \left ( x \right ) }} \left ( 1+x \right ) }{2}{\frac{1}{\sqrt{{x}^{2}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(arctan(x))/(x^2+1)^(3/2),x)

[Out]

1/2*exp(arctan(x))*(1+x)/(x^2+1)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e^{\arctan \left (x\right )}}{{\left (x^{2} + 1\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(arctan(x))/(x^2+1)^(3/2),x, algorithm="maxima")

[Out]

integrate(e^arctan(x)/(x^2 + 1)^(3/2), x)

________________________________________________________________________________________

Fricas [A]  time = 0.930216, size = 53, normalized size = 2.65 \begin{align*} \frac{{\left (x + 1\right )} e^{\arctan \left (x\right )}}{2 \, \sqrt{x^{2} + 1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(arctan(x))/(x^2+1)^(3/2),x, algorithm="fricas")

[Out]

1/2*(x + 1)*e^arctan(x)/sqrt(x^2 + 1)

________________________________________________________________________________________

Sympy [A]  time = 117.73, size = 31, normalized size = 1.55 \begin{align*} \frac{x e^{\operatorname{atan}{\left (x \right )}}}{2 \sqrt{x^{2} + 1}} + \frac{e^{\operatorname{atan}{\left (x \right )}}}{2 \sqrt{x^{2} + 1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(atan(x))/(x**2+1)**(3/2),x)

[Out]

x*exp(atan(x))/(2*sqrt(x**2 + 1)) + exp(atan(x))/(2*sqrt(x**2 + 1))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e^{\arctan \left (x\right )}}{{\left (x^{2} + 1\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(arctan(x))/(x^2+1)^(3/2),x, algorithm="giac")

[Out]

integrate(e^arctan(x)/(x^2 + 1)^(3/2), x)