3.175 \(\int \frac{1}{\sqrt{1+t^3}} \, dt\)

Optimal. Leaf size=103 \[ \frac{2 \sqrt{2+\sqrt{3}} (t+1) \sqrt{\frac{t^2-t+1}{\left (t+\sqrt{3}+1\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{t-\sqrt{3}+1}{t+\sqrt{3}+1}\right ),-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{t+1}{\left (t+\sqrt{3}+1\right )^2}} \sqrt{t^3+1}} \]

[Out]

(2*Sqrt[2 + Sqrt[3]]*(1 + t)*Sqrt[(1 - t + t^2)/(1 + Sqrt[3] + t)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + t)/(1 + S
qrt[3] + t)], -7 - 4*Sqrt[3]])/(3^(1/4)*Sqrt[(1 + t)/(1 + Sqrt[3] + t)^2]*Sqrt[1 + t^3])

________________________________________________________________________________________

Rubi [A]  time = 0.0084795, antiderivative size = 103, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 9, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {218} \[ \frac{2 \sqrt{2+\sqrt{3}} (t+1) \sqrt{\frac{t^2-t+1}{\left (t+\sqrt{3}+1\right )^2}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{t-\sqrt{3}+1}{t+\sqrt{3}+1}\right ),-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{t+1}{\left (t+\sqrt{3}+1\right )^2}} \sqrt{t^3+1}} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[1 + t^3],t]

[Out]

(2*Sqrt[2 + Sqrt[3]]*(1 + t)*Sqrt[(1 - t + t^2)/(1 + Sqrt[3] + t)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + t)/(1 + S
qrt[3] + t)], -7 - 4*Sqrt[3]])/(3^(1/4)*Sqrt[(1 + t)/(1 + Sqrt[3] + t)^2]*Sqrt[1 + t^3])

Rule 218

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(2*Sqr
t[2 + Sqrt[3]]*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3
])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(s*(s + r*x))/((1 + Sqr
t[3])*s + r*x)^2]), x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{1+t^3}} \, dt &=\frac{2 \sqrt{2+\sqrt{3}} (1+t) \sqrt{\frac{1-t+t^2}{\left (1+\sqrt{3}+t\right )^2}} F\left (\sin ^{-1}\left (\frac{1-\sqrt{3}+t}{1+\sqrt{3}+t}\right )|-7-4 \sqrt{3}\right )}{\sqrt [4]{3} \sqrt{\frac{1+t}{\left (1+\sqrt{3}+t\right )^2}} \sqrt{1+t^3}}\\ \end{align*}

Mathematica [C]  time = 0.0018868, size = 17, normalized size = 0.17 \[ t \text{Hypergeometric2F1}\left (\frac{1}{3},\frac{1}{2},\frac{4}{3},-t^3\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[1 + t^3],t]

[Out]

t*Hypergeometric2F1[1/3, 1/2, 4/3, -t^3]

________________________________________________________________________________________

Maple [A]  time = 0.039, size = 116, normalized size = 1.1 \begin{align*} 2\,{\frac{3/2-i/2\sqrt{3}}{\sqrt{{t}^{3}+1}}\sqrt{{\frac{1+t}{3/2-i/2\sqrt{3}}}}\sqrt{{\frac{t-1/2-i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}}\sqrt{{\frac{t-1/2+i/2\sqrt{3}}{-3/2+i/2\sqrt{3}}}}{\it EllipticF} \left ( \sqrt{{\frac{1+t}{3/2-i/2\sqrt{3}}}},\sqrt{{\frac{-3/2+i/2\sqrt{3}}{-3/2-i/2\sqrt{3}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(t^3+1)^(1/2),t)

[Out]

2*(3/2-1/2*I*3^(1/2))*((1+t)/(3/2-1/2*I*3^(1/2)))^(1/2)*((t-1/2-1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((t
-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)))^(1/2)/(t^3+1)^(1/2)*EllipticF(((1+t)/(3/2-1/2*I*3^(1/2)))^(1/2),((-3
/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{t^{3} + 1}}\,{d t} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(t^3+1)^(1/2),t, algorithm="maxima")

[Out]

integrate(1/sqrt(t^3 + 1), t)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{\sqrt{t^{3} + 1}}, t\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(t^3+1)^(1/2),t, algorithm="fricas")

[Out]

integral(1/sqrt(t^3 + 1), t)

________________________________________________________________________________________

Sympy [A]  time = 0.530859, size = 27, normalized size = 0.26 \begin{align*} \frac{t \Gamma \left (\frac{1}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{3}, \frac{1}{2} \\ \frac{4}{3} \end{matrix}\middle |{t^{3} e^{i \pi }} \right )}}{3 \Gamma \left (\frac{4}{3}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(t**3+1)**(1/2),t)

[Out]

t*gamma(1/3)*hyper((1/3, 1/2), (4/3,), t**3*exp_polar(I*pi))/(3*gamma(4/3))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{t^{3} + 1}}\,{d t} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(t^3+1)^(1/2),t, algorithm="giac")

[Out]

integrate(1/sqrt(t^3 + 1), t)