Integral number [65] \[ \int \frac{\tan ^{-1}(a+b x)}{\sqrt [3]{1+a^2+2 a b x+b^2 x^2}} \, dx \]
[B] time = 0.363002 (sec), size = 163 ,normalized size = 7.41 \[ \frac{\frac{5 \sqrt [3]{2} \sqrt{\pi } \text{Gamma}\left (\frac{5}{3}\right ) \text{HypergeometricPFQ}\left (\left \{1,\frac{4}{3},\frac{4}{3}\right \},\left \{\frac{11}{6},\frac{7}{3}\right \},\frac{1}{(a+b x)^2+1}\right )}{(a+b x)^2+1}+6 \text{Gamma}\left (\frac{11}{6}\right ) \text{Gamma}\left (\frac{7}{3}\right ) \left (\frac{4 (a+b x) \tan ^{-1}(a+b x) \text{Hypergeometric2F1}\left (1,\frac{4}{3},\frac{11}{6},\frac{1}{(a+b x)^2+1}\right )}{(a+b x)^2+1}+10 (a+b x) \tan ^{-1}(a+b x)+15\right )}{20 b \text{Gamma}\left (\frac{11}{6}\right ) \text{Gamma}\left (\frac{7}{3}\right ) \sqrt [3]{a^2+2 a b x+b^2 x^2+1}} \]
[In]
[Out]
Integral number [66] \[ \int \frac{\tan ^{-1}(a+b x)}{\sqrt [3]{\left (1+a^2\right ) c+2 a b c x+b^2 c x^2}} \, dx \]
[B] time = 0.0728054 (sec), size = 165 ,normalized size = 6.88 \[ \frac{\frac{5 \sqrt [3]{2} \sqrt{\pi } \text{Gamma}\left (\frac{5}{3}\right ) \text{HypergeometricPFQ}\left (\left \{1,\frac{4}{3},\frac{4}{3}\right \},\left \{\frac{11}{6},\frac{7}{3}\right \},\frac{1}{(a+b x)^2+1}\right )}{(a+b x)^2+1}+6 \text{Gamma}\left (\frac{11}{6}\right ) \text{Gamma}\left (\frac{7}{3}\right ) \left (\frac{4 (a+b x) \tan ^{-1}(a+b x) \text{Hypergeometric2F1}\left (1,\frac{4}{3},\frac{11}{6},\frac{1}{(a+b x)^2+1}\right )}{(a+b x)^2+1}+10 (a+b x) \tan ^{-1}(a+b x)+15\right )}{20 b \text{Gamma}\left (\frac{11}{6}\right ) \text{Gamma}\left (\frac{7}{3}\right ) \sqrt [3]{c \left (a^2+2 a b x+b^2 x^2+1\right )}} \]
[In]
[Out]
Integral number [69] \[ \int \frac{(a+b x)^2 \tan ^{-1}(a+b x)}{\sqrt [3]{1+a^2+2 a b x+b^2 x^2}} \, dx \]
[B] time = 1.43275 (sec), size = 181 ,normalized size = 6.24 \[ -\frac{3 \left ((a+b x)^2+1\right )^{2/3} \left (\frac{5 \sqrt [3]{2} \sqrt{\pi } \text{Gamma}\left (\frac{5}{3}\right ) \text{HypergeometricPFQ}\left (\left \{1,\frac{4}{3},\frac{4}{3}\right \},\left \{\frac{11}{6},\frac{7}{3}\right \},\frac{1}{(a+b x)^2+1}\right )}{\left ((a+b x)^2+1\right )^2}+\text{Gamma}\left (\frac{11}{6}\right ) \text{Gamma}\left (\frac{7}{3}\right ) \left (\frac{24 (a+b x) \tan ^{-1}(a+b x) \text{Hypergeometric2F1}\left (1,\frac{4}{3},\frac{11}{6},\frac{1}{(a+b x)^2+1}\right )}{\left ((a+b x)^2+1\right )^2}+\frac{90}{(a+b x)^2+1}+5 \tan ^{-1}(a+b x) \left (6 \sin \left (2 \tan ^{-1}(a+b x)\right )-4 (a+b x)\right )+15\right )\right )}{140 b \text{Gamma}\left (\frac{11}{6}\right ) \text{Gamma}\left (\frac{7}{3}\right )} \]
[In]
[Out]
Integral number [70] \[ \int \frac{(a+b x)^2 \tan ^{-1}(a+b x)}{\sqrt [3]{\left (1+a^2\right ) c+2 a b c x+b^2 c x^2}} \, dx \]
[B] time = 0.312256 (sec), size = 225 ,normalized size = 7.26 \[ -\frac{3 \sqrt [3]{a^2+2 a b x+b^2 x^2+1} \left ((a+b x)^2+1\right )^{2/3} \left (\frac{5 \sqrt [3]{2} \sqrt{\pi } \text{Gamma}\left (\frac{5}{3}\right ) \text{HypergeometricPFQ}\left (\left \{1,\frac{4}{3},\frac{4}{3}\right \},\left \{\frac{11}{6},\frac{7}{3}\right \},\frac{1}{(a+b x)^2+1}\right )}{\left ((a+b x)^2+1\right )^2}+\text{Gamma}\left (\frac{11}{6}\right ) \text{Gamma}\left (\frac{7}{3}\right ) \left (\frac{24 (a+b x) \tan ^{-1}(a+b x) \text{Hypergeometric2F1}\left (1,\frac{4}{3},\frac{11}{6},\frac{1}{(a+b x)^2+1}\right )}{\left ((a+b x)^2+1\right )^2}+\frac{90}{(a+b x)^2+1}+5 \tan ^{-1}(a+b x) \left (6 \sin \left (2 \tan ^{-1}(a+b x)\right )-4 (a+b x)\right )+15\right )\right )}{140 b \text{Gamma}\left (\frac{11}{6}\right ) \text{Gamma}\left (\frac{7}{3}\right ) \sqrt [3]{c \left (a^2+2 a b x+b^2 x^2+1\right )}} \]
[In]
[Out]