Integral number [166] \[ \int \frac{(f x)^m \left (a+b \log \left (c x^n\right )\right )}{d+e x} \, dx \]
[B] time = 0.101956 (sec), size = 72 ,normalized size = 2.88 \[ \frac{x (f x)^m \left ((m+1) \, _2F_1\left (1,m+1;m+2;-\frac{e x}{d}\right ) \left (a+b \log \left (c x^n\right )\right )-b n \, _3F_2\left (1,m+1,m+1;m+2,m+2;-\frac{e x}{d}\right )\right )}{d (m+1)^2} \]
[In]
[Out]
Integral number [167] \[ \int \frac{(f x)^m \left (a+b \log \left (c x^n\right )\right )}{(d+e x)^2} \, dx \]
[B] time = 0.103213 (sec), size = 72 ,normalized size = 2.88 \[ \frac{x (f x)^m \left ((m+1) \, _2F_1\left (2,m+1;m+2;-\frac{e x}{d}\right ) \left (a+b \log \left (c x^n\right )\right )-b n \, _3F_2\left (2,m+1,m+1;m+2,m+2;-\frac{e x}{d}\right )\right )}{d^2 (m+1)^2} \]
[In]
[Out]
Integral number [168] \[ \int x (a+b x)^m \log \left (c x^n\right ) \, dx \]
[B] time = 0.2398 (sec), size = 173 ,normalized size = 10.18 \[ \frac{(a+b x)^m \left (\frac{b x}{a}+1\right )^{-m} \left (a b (m+2) n x \, _3F_2\left (1,1,-m-1;2,2;-\frac{b x}{a}\right )+\left (-a^2 \left (\left (\frac{b x}{a}+1\right )^m-1\right )+b^2 (m+1) x^2 \left (\frac{b x}{a}+1\right )^m+a b m x \left (\frac{b x}{a}+1\right )^m\right ) \log \left (c x^n\right )-n \left (a^2 \left (\left (\frac{b x}{a}+1\right )^m-1\right )+b^2 x^2 \left (\frac{b x}{a}+1\right )^m+2 a b x \left (\frac{b x}{a}+1\right )^m\right )\right )}{b^2 (m+1) (m+2)} \]
[In]
[Out]
Integral number [170] \[ \int \frac{(a+b x)^m \log \left (c x^n\right )}{x} \, dx \]
[B] time = 0.0541875 (sec), size = 89 ,normalized size = 4.68 \[ \frac{\left (\frac{a}{b x}+1\right )^{-m} (a+b x)^m \left (m \log \left (c x^n\right ) \, _2F_1\left (-m,-m;1-m;-\frac{a}{b x}\right )-n \, _3F_2\left (-m,-m,-m;1-m,1-m;-\frac{a}{b x}\right )\right )}{m^2} \]
[In]
[Out]
Integral number [322] \[ \int \frac{(f x)^m \left (a+b \log \left (c x^n\right )\right )}{d+e x^2} \, dx \]
[B] time = 0.199069 (sec), size = 108 ,normalized size = 4. \[ \frac{x (f x)^m \left ((m+1) \, _2F_1\left (1,\frac{m+1}{2};\frac{m+3}{2};-\frac{e x^2}{d}\right ) \left (a+b \log \left (c x^n\right )\right )-b n \, _3F_2\left (1,\frac{m}{2}+\frac{1}{2},\frac{m}{2}+\frac{1}{2};\frac{m}{2}+\frac{3}{2},\frac{m}{2}+\frac{3}{2};-\frac{e x^2}{d}\right )\right )}{d (m+1)^2} \]
[In]
[Out]
Integral number [323] \[ \int \frac{(f x)^m \left (a+b \log \left (c x^n\right )\right )}{\left (d+e x^2\right )^2} \, dx \]
[B] time = 0.120758 (sec), size = 108 ,normalized size = 4. \[ \frac{x (f x)^m \left ((m+1) \, _2F_1\left (2,\frac{m+1}{2};\frac{m+3}{2};-\frac{e x^2}{d}\right ) \left (a+b \log \left (c x^n\right )\right )-b n \, _3F_2\left (2,\frac{m}{2}+\frac{1}{2},\frac{m}{2}+\frac{1}{2};\frac{m}{2}+\frac{3}{2},\frac{m}{2}+\frac{3}{2};-\frac{e x^2}{d}\right )\right )}{d^2 (m+1)^2} \]
[In]
[Out]
Integral number [406] \[ \int \frac{x^3 \left (a+b \log \left (c x^n\right )\right )}{d+e x^r} \, dx \]
[B] time = 0.116605 (sec), size = 87 ,normalized size = 3.48 \[ \frac{x^4 \left (4 \, _2F_1\left (1,\frac{4}{r};\frac{r+4}{r};-\frac{e x^r}{d}\right ) \left (a+b \log \left (c x^n\right )\right )-b n \, _3F_2\left (1,\frac{4}{r},\frac{4}{r};1+\frac{4}{r},1+\frac{4}{r};-\frac{e x^r}{d}\right )\right )}{16 d} \]
[In]
[Out]
Integral number [407] \[ \int \frac{x \left (a+b \log \left (c x^n\right )\right )}{d+e x^r} \, dx \]
[B] time = 0.0997893 (sec), size = 87 ,normalized size = 3.78 \[ \frac{x^2 \left (2 \, _2F_1\left (1,\frac{2}{r};\frac{r+2}{r};-\frac{e x^r}{d}\right ) \left (a+b \log \left (c x^n\right )\right )-b n \, _3F_2\left (1,\frac{2}{r},\frac{2}{r};1+\frac{2}{r},1+\frac{2}{r};-\frac{e x^r}{d}\right )\right )}{4 d} \]
[In]
[Out]
Integral number [409] \[ \int \frac{a+b \log \left (c x^n\right )}{x^3 \left (d+e x^r\right )} \, dx \]
[B] time = 0.104514 (sec), size = 86 ,normalized size = 3.44 \[ -\frac{b n \, _3F_2\left (1,-\frac{2}{r},-\frac{2}{r};1-\frac{2}{r},1-\frac{2}{r};-\frac{e x^r}{d}\right )+2 \, _2F_1\left (1,-\frac{2}{r};\frac{r-2}{r};-\frac{e x^r}{d}\right ) \left (a+b \log \left (c x^n\right )\right )}{4 d x^2} \]
[In]
[Out]
Integral number [410] \[ \int \frac{x^2 \left (a+b \log \left (c x^n\right )\right )}{d+e x^r} \, dx \]
[B] time = 0.106612 (sec), size = 87 ,normalized size = 3.48 \[ \frac{x^3 \left (3 \, _2F_1\left (1,\frac{3}{r};\frac{r+3}{r};-\frac{e x^r}{d}\right ) \left (a+b \log \left (c x^n\right )\right )-b n \, _3F_2\left (1,\frac{3}{r},\frac{3}{r};1+\frac{3}{r},1+\frac{3}{r};-\frac{e x^r}{d}\right )\right )}{9 d} \]
[In]
[Out]
Integral number [411] \[ \int \frac{a+b \log \left (c x^n\right )}{d+e x^r} \, dx \]
[B] time = 0.0787297 (sec), size = 69 ,normalized size = 3.14 \[ \frac{x \left (\, _2F_1\left (1,\frac{1}{r};1+\frac{1}{r};-\frac{e x^r}{d}\right ) \left (a+b \log \left (c x^n\right )\right )-b n \, _3F_2\left (1,\frac{1}{r},\frac{1}{r};1+\frac{1}{r},1+\frac{1}{r};-\frac{e x^r}{d}\right )\right )}{d} \]
[In]
[Out]
Integral number [412] \[ \int \frac{a+b \log \left (c x^n\right )}{x^2 \left (d+e x^r\right )} \, dx \]
[B] time = 0.0973344 (sec), size = 83 ,normalized size = 3.32 \[ -\frac{b n \, _3F_2\left (1,-\frac{1}{r},-\frac{1}{r};1-\frac{1}{r},1-\frac{1}{r};-\frac{e x^r}{d}\right )+\, _2F_1\left (1,-\frac{1}{r};\frac{r-1}{r};-\frac{e x^r}{d}\right ) \left (a+b \log \left (c x^n\right )\right )}{d x} \]
[In]
[Out]
Integral number [413] \[ \int \frac{x^3 \left (a+b \log \left (c x^n\right )\right )}{\left (d+e x^r\right )^2} \, dx \]
[B] time = 0.243539 (sec), size = 140 ,normalized size = 5.6 \[ \frac{x^4 \left (-b n (r-4) \left (d+e x^r\right ) \, _3F_2\left (1,\frac{4}{r},\frac{4}{r};1+\frac{4}{r},1+\frac{4}{r};-\frac{e x^r}{d}\right )+4 \left (d+e x^r\right ) \, _2F_1\left (1,\frac{4}{r};\frac{r+4}{r};-\frac{e x^r}{d}\right ) \left (a (r-4)+b (r-4) \log \left (c x^n\right )-b n\right )+16 d \left (a+b \log \left (c x^n\right )\right )\right )}{16 d^2 r \left (d+e x^r\right )} \]
[In]
[Out]
Integral number [414] \[ \int \frac{x \left (a+b \log \left (c x^n\right )\right )}{\left (d+e x^r\right )^2} \, dx \]
[B] time = 0.233625 (sec), size = 140 ,normalized size = 6.09 \[ \frac{x^2 \left (-b n (r-2) \left (d+e x^r\right ) \, _3F_2\left (1,\frac{2}{r},\frac{2}{r};1+\frac{2}{r},1+\frac{2}{r};-\frac{e x^r}{d}\right )+2 \left (d+e x^r\right ) \, _2F_1\left (1,\frac{2}{r};\frac{r+2}{r};-\frac{e x^r}{d}\right ) \left (a (r-2)+b (r-2) \log \left (c x^n\right )-b n\right )+4 d \left (a+b \log \left (c x^n\right )\right )\right )}{4 d^2 r \left (d+e x^r\right )} \]
[In]
[Out]
Integral number [416] \[ \int \frac{a+b \log \left (c x^n\right )}{x^3 \left (d+e x^r\right )^2} \, dx \]
[B] time = 0.23461 (sec), size = 139 ,normalized size = 5.56 \[ -\frac{b n (r+2) \left (d+e x^r\right ) \, _3F_2\left (1,-\frac{2}{r},-\frac{2}{r};1-\frac{2}{r},1-\frac{2}{r};-\frac{e x^r}{d}\right )+2 \left (d+e x^r\right ) \, _2F_1\left (1,-\frac{2}{r};\frac{r-2}{r};-\frac{e x^r}{d}\right ) \left (a (r+2)+b (r+2) \log \left (c x^n\right )-b n\right )-4 d \left (a+b \log \left (c x^n\right )\right )}{4 d^2 r x^2 \left (d+e x^r\right )} \]
[In]
[Out]
Integral number [417] \[ \int \frac{x^2 \left (a+b \log \left (c x^n\right )\right )}{\left (d+e x^r\right )^2} \, dx \]
[B] time = 0.238609 (sec), size = 140 ,normalized size = 5.6 \[ \frac{x^3 \left (-b n (r-3) \left (d+e x^r\right ) \, _3F_2\left (1,\frac{3}{r},\frac{3}{r};1+\frac{3}{r},1+\frac{3}{r};-\frac{e x^r}{d}\right )+3 \left (d+e x^r\right ) \, _2F_1\left (1,\frac{3}{r};\frac{r+3}{r};-\frac{e x^r}{d}\right ) \left (a (r-3)+b (r-3) \log \left (c x^n\right )-b n\right )+9 d \left (a+b \log \left (c x^n\right )\right )\right )}{9 d^2 r \left (d+e x^r\right )} \]
[In]
[Out]
Integral number [418] \[ \int \frac{a+b \log \left (c x^n\right )}{\left (d+e x^r\right )^2} \, dx \]
[B] time = 2.46866 (sec), size = 161 ,normalized size = 7.32 \[ \frac{x \left (-b n (r-1) \left (d+e x^r\right ) \, _3F_2\left (1,\frac{1}{r},\frac{1}{r};1+\frac{1}{r},1+\frac{1}{r};-\frac{e x^r}{d}\right )+a e r x^r \, _2F_1\left (2,\frac{1}{r};1+\frac{1}{r};-\frac{e x^r}{d}\right )+a d r \, _2F_1\left (2,\frac{1}{r};1+\frac{1}{r};-\frac{e x^r}{d}\right )-b \left (d+e x^r\right ) \left (n-(r-1) \log \left (c x^n\right )\right ) \, _2F_1\left (1,\frac{1}{r};1+\frac{1}{r};-\frac{e x^r}{d}\right )+b d \log \left (c x^n\right )\right )}{d^2 r \left (d+e x^r\right )} \]
[In]
[Out]
Integral number [419] \[ \int \frac{a+b \log \left (c x^n\right )}{x^2 \left (d+e x^r\right )^2} \, dx \]
[B] time = 0.201404 (sec), size = 135 ,normalized size = 5.4 \[ \frac{-b n (r+1) \left (d+e x^r\right ) \, _3F_2\left (1,-\frac{1}{r},-\frac{1}{r};1-\frac{1}{r},1-\frac{1}{r};-\frac{e x^r}{d}\right )-\left (d+e x^r\right ) \, _2F_1\left (1,-\frac{1}{r};\frac{r-1}{r};-\frac{e x^r}{d}\right ) \left (a r+a+b (r+1) \log \left (c x^n\right )-b n\right )+d \left (a+b \log \left (c x^n\right )\right )}{d^2 r x \left (d+e x^r\right )} \]
[In]
[Out]
Integral number [444] \[ \int \frac{(f x)^m \left (a+b \log \left (c x^n\right )\right )}{d+e x^r} \, dx \]
[B] time = 0.153989 (sec), size = 111 ,normalized size = 4.11 \[ \frac{x (f x)^m \left ((m+1) \left (a+b \log \left (c x^n\right )\right ) \, _2F_1\left (1,\frac{m+1}{r};\frac{m+r+1}{r};-\frac{e x^r}{d}\right )-b n \, _3F_2\left (1,\frac{m}{r}+\frac{1}{r},\frac{m}{r}+\frac{1}{r};\frac{m}{r}+\frac{1}{r}+1,\frac{m}{r}+\frac{1}{r}+1;-\frac{e x^r}{d}\right )\right )}{d (m+1)^2} \]
[In]
[Out]
Integral number [445] \[ \int \frac{(f x)^m \left (a+b \log \left (c x^n\right )\right )}{\left (d+e x^r\right )^2} \, dx \]
[B] time = 0.387871 (sec), size = 177 ,normalized size = 6.56 \[ \frac{x (f x)^m \left (b n (m-r+1) \left (d+e x^r\right ) \, _3F_2\left (1,\frac{m}{r}+\frac{1}{r},\frac{m}{r}+\frac{1}{r};\frac{m}{r}+\frac{1}{r}+1,\frac{m}{r}+\frac{1}{r}+1;-\frac{e x^r}{d}\right )-(m+1) \left (\left (d+e x^r\right ) \, _2F_1\left (1,\frac{m+1}{r};\frac{m+r+1}{r};-\frac{e x^r}{d}\right ) \left (a (m-r+1)+b (m-r+1) \log \left (c x^n\right )+b n\right )-d (m+1) \left (a+b \log \left (c x^n\right )\right )\right )\right )}{d^2 (m+1)^2 r \left (d+e x^r\right )} \]
[In]
[Out]