2.32 Cheat sheet

  2.32.1 Laplace Transforms for exam
  2.32.2 Partial fractions
  2.32.3 Final value
  2.32.4 Tracking
  2.32.5 Second order system

2.32.1 Laplace Transforms for exam




time Laplace



impulse \(\delta \left ( t\right ) \) \(1\)



delayed impulse \(\delta \left ( t-a\right ) \) \(e^{-as}\)



unit step \(u\left ( t\right ) \) \(\frac{1}{s}\)



delayed unit impulse \(u\left ( t-a\right ) \) \(\frac{1}{s}e^{-as}\)



ramp \(t\) \(\frac{1}{s^{2}}\)



parabolic \(t^{2}\) \(\frac{2}{s^{3}}\)



\(tf\left ( t\right ) \) \(-F^{\prime }\left ( s\right ) \)



scaled \(f\left ( at\right ) \) \(\frac{1}{a}F\left ( \frac{s}{a}\right ) \)



\(e^{at}f\left ( t\right ) \) \(F\left ( s-a\right ) \)



\(f\left ( t\right ) \) \(F\left ( s\right ) \)



derivative \(f^{\prime }\left ( t\right ) \) \(sF\left ( s\right ) -f\left ( 0\right ) \)



second derivative \(f^{\prime \prime }\left ( t\right ) \) \(s^{2}F\left ( s\right ) -sf\left ( 0\right ) -f^{\prime }\left ( 0\right ) \)



integrator \(\int _{0}^{t}f\left ( \tau \right ) d\tau \) \(\frac{1}{s}F\left ( s\right ) \)



delay in time \(f\left ( t-a\right ) u\left ( t-a\right ) \) \(e^{-as}F\left ( s\right ) \)



convolution \(f\left ( t\right ) \circledast g\left ( t\right ) \) \(F\left ( s\right ) G\left ( s\right ) \)



\(e^{-at}u\left ( t\right ) \) \(\frac{1}{s+a}\)



\(e^{-a\left \vert t\right \vert }\) \(\frac{2a}{a^{2}-s^{2}}\)



\(\left ( 1-e^{-at}\right ) u\left ( t\right ) \) \(\frac{a}{s\left ( s+a\right ) }\)



\(\sin \left ( at\right ) u\left ( t\right ) \) \(\frac{a}{s^{2}+a^{2}}\)



\(\cos \left ( at\right ) u\left ( t\right ) \) \(\frac{s}{s^{2}+a^{2}}\)



\(e^{-bt}\sin \left ( at\right ) u\left ( t\right ) \) \(\frac{a}{\left ( s+b\right ) ^{2}+a^{2}}\)



\(e^{-bt}\cos \left ( at\right ) u\left ( t\right ) \) \(\frac{s+b}{\left ( s+b\right ) ^{2}+a^{2}}\)



2.32.2 Partial fractions

1.
\begin{align*} \frac{1}{\left ( s+a\right ) \left ( s+b\right ) } & =\frac{A}{\left ( s+a\right ) }+\frac{B}{\left ( s+b\right ) }\\ A & =\lim _{s\rightarrow -a}\frac{1}{\left ( s+b\right ) }\\ B & =\lim _{s\rightarrow -b}\frac{1}{\left ( s+a\right ) } \end{align*}
2.
\begin{align*} \frac{1}{\left ( s+a\right ) \left ( s+b\right ) ^{2}} & =\frac{A}{\left ( s+a\right ) }+\frac{B}{\left ( s+b\right ) }+\frac{C}{\left ( s+b\right ) ^{2}}\\ A & =\lim _{s\rightarrow -a}\frac{1}{\left ( s+b\right ) ^{2}}\\ B & =\lim _{s\rightarrow -b}\frac{d}{ds}\left ( \frac{1}{\left ( s+a\right ) }\right ) \\ C & =\lim _{s\rightarrow -b}\frac{1}{\left ( s+a\right ) ^{2}} \end{align*}
3.
\begin{align*} \frac{1}{\left ( s+a\right ) \left ( s^{2}+b\right ) } & =\frac{A}{\left ( s+a\right ) }+\frac{Bs+C}{\left ( s^{2}+b\right ) }\\ A & =\lim _{s\rightarrow -a}\frac{1}{\left ( s^{2}+b\right ) } \end{align*}

For \(B,C\), expand now and compare coefficients (but there should be faster way)

2.32.3 Final value

Suppose \(F\left ( s\right ) =\frac{N\left ( s\right ) }{D\left ( s\right ) }\) is stable, then \[ \lim _{t\rightarrow \infty }f\left ( t\right ) =\lim _{s\rightarrow 0}sF\left ( s\right ) \]

\(F\left ( s\right ) \) is allowed to have only one pole at origin and still use FVT. But if \(F\left ( s\right ) \) has more than one pole at the origin, or unstable, we can’t use FVT to determine \(\lim _{t\rightarrow \infty }f\left ( t\right ) \).

2.32.4 Tracking

\(\frac{E\left ( s\right ) }{R\left ( s\right ) }=\frac{1}{1+GH}\). To have \(\lim _{t\rightarrow \infty }e\left ( t\right ) =0\) when the input \(R\left ( s\right ) \) is step, we need to have integrator in \(G\left ( s\right ) H\left ( s\right ) \). Since we want \(GH\) to be very large for \(s=0\). And integrator is \(\frac{1}{s}\). If the input is ramp \(t\), then we need \(\frac{1}{s^{2}}\) in \(GH\). If the input is \(t^{2}\) then we need \(\frac{1}{s^{3}}\) in the controller. and so on.

2.32.5 Second order system

\(G\left ( s\right ) =\frac{\omega _{n}^{2}}{s^{2}+2\zeta \omega _{n}s+\omega _{n}^{2}}\), \(y_{step}\left ( t\right ) =1-\frac{e^{-\zeta \omega _{n}t}}{\sqrt{1-\zeta ^{2}}}\left ( \sin \omega _{n}\sqrt{1-\zeta ^{2}}t+\phi \right ) \) where \(\phi =\cos ^{-1}\zeta \). Maximum overshoot is \(e^{\frac{-\pi \zeta }{\sqrt{1-\zeta ^{2}}}}\). Resonance frequency \(\omega _{r}=\omega _{n}\sqrt{1-2\zeta ^{2}}\), and \(\left \vert G\left ( \omega _{r}\right ) \right \vert =\frac{1}{2\zeta \sqrt{1-\zeta ^{2}}}\) l.3981 — TeX4ht warning — “SaveEverypar’s: 2 at “begindocument and 3 “enddocument —