4.5 Existence-uniqueness for 1D ODE

  4.5.1 practice problems

Given by theorem 2 for existence and uniqueness: given \(\frac{dy}{dx}=f\left ( x,y\right ) \), with initial value \(y\left ( x_{0}\right ) =y_{0}\). Let \(f\) and \(\frac{\partial f}{\partial x}\)be continuous in the rectangle \(R:t\leq t\leq t_{0}+a,\left \vert y-y_{0}\right \vert \leq b\). Compute \(M=\max _{\left ( x,y\right ) }\left \vert f\left ( x,y\right ) \right \vert \) and set \(\alpha =\min \left ( a,\frac{b}{M}\right ) \) then ODE has at least one solution in interval \(t\leq t\leq t_{0}+\alpha \) and this solution is unique. (I do not know why book split this into theorem 2 and 2’).

Notice in the above, if \(f\) or \(\frac{\partial f}{\partial x}\) not continuous in the range (the range must include the initial point) then not unique solution exist. For example \(y^{\prime }=\sin \left ( 2t\right ) y^{\frac{1}{3}}\) with \(y\left ( 0\right ) =0\). Here \(f^{\prime }\) is not continuous at \(y=0\).

How to use the above The first step is to find \(M\). This is done by finding maximum in \(R\). This is normally done by inspection from looking at \(f\left ( x,y\right ) \). Next, let \(g\left ( y\right ) =\frac{b}{M}\). Find where this one is maximum. set its value in \(\alpha =\min \left ( a,\frac{b}{M}\right ) \) and this finds \(\alpha \). Done. Example. Show \(y\left ( t\right ) \) solution to \(\frac{dy}{dt}=t^{2}+e^{-y^{2}},y\left ( 0\right ) =0\) exists in \(0\leq t\leq \frac{1}{2}\) and \(\left \vert y\left ( t\right ) \right \vert \leq 1\). Here it is clear \(M=\frac{5}{4}\) and hence \(\alpha =\min \left ( \frac{1}{2},\frac{b}{M}\right ) \) but \(b=1\), hence \(\alpha =\min \left ( \frac{1}{2},\frac{1}{\frac{5}{4}}\right ) =\alpha =\min \left ( \frac{1}{2},\frac{4}{5}\right ) =\frac{1}{2}\). Therefore solution exist for \(0\leq t\leq 0+\alpha \) or \(0\leq t\leq \frac{1}{2}\).

4.5.1 practice problems

   4.5.1.1 Problem 5, section 1.10
   4.5.1.2 Problem 16, section 1.10
   4.5.1.3 Problem 17, section 1.10
   4.5.1.4 Problem 19, section 1.10

4.5.1.1 Problem 5, section 1.10

Show that the solution \(y\left ( t\right ) \) exists on \(y\left ( 0\right ) =0;0\leq t\leq \frac{1}{3}\)\[ y^{\prime }=1+y+y^{2}\cos t \] solution

Here \(a=\frac{1}{3}\).\begin{align*} M & =\max \left ( f\left ( t,y\right ) \right ) \\ & =1+b+b^{2} \end{align*}

Hence \begin{align*} \alpha & =\min \left ( \frac{1}{3},\frac{b}{M}\right ) \\ & =\min \left ( \frac{1}{3},\frac{b}{1+b+b^{2}}\right ) \end{align*}

Let \(g\left ( b\right ) =\frac{b}{1+b+b^{2}}\) then \(\frac{dg}{dp}=\frac{\left ( 1+b+b^{2}\right ) -b\left ( 1+2b\right ) }{\left ( 1+b+b^{2}\right ) ^{2}}\). Setting this to zero and solving for \(b\)\begin{align*} \left ( 1+b+b^{2}\right ) -b\left ( 1+2b\right ) & =0\\ 1+b+b^{2}-b-2b^{2} & =0\\ 1-b^{2} & =0 \end{align*}

Hence \(b=1\). At \(b=1\), then \(g\left ( b\right ) =\frac{1}{1+1+1}=\frac{1}{3}\). Therefore \begin{align*} \alpha & =\min \left ( \frac{1}{3},\frac{1}{3}\right ) \\ & =\frac{1}{3} \end{align*}

Therefore \(y\left ( t\right ) \,\) solution exist for \(0\leq t\leq 0+\alpha \) or \(0\leq t\leq \frac{1}{3}\).

4.5.1.2 Problem 16, section 1.10

Consider \(y^{\prime }=t^{2}+y^{2},y\left ( 0\right ) =0\) and let \(R\) be rectangle \(0\leq t\leq a,-b\leq y\leq b\). (a) Show the solution exist for \(0\leq t\leq \min \left ( a,\frac{b}{a^{2}+b^{2}}\right ) \) (b) Show the maximum value of \(\frac{b}{a^{2}+b^{2}}\,\), for \(a\) fixed is \(\frac{1}{2a}\). (c) Show that \(\alpha =\min \left ( a,\frac{1}{2}a\right ) \) is largest when \(a=\frac{1}{\sqrt{2}}\)\[ y^{\prime }=1+y+y^{2}\cos t \] solution

(a)

\begin{align*} M & =\max \left ( f\left ( t,y\right ) \right ) \\ & =a^{2}+b^{2} \end{align*}

Hence \begin{align*} \alpha & =\min \left ( a,\frac{b}{M}\right ) \\ & =\min \left ( \frac{1}{3},\frac{b}{a^{2}+b^{2}}\right ) \end{align*}

Hence solution exist for \(0\leq t\leq \min \left ( a,\frac{b}{a^{2}+b^{2}}\right ) \).

(b) Let \(g\left ( b\right ) =\frac{b}{a^{2}+b^{2}}\) then \(\frac{dg}{dp}=\frac{\left ( a^{2}+b^{2}\right ) -b\left ( 2b\right ) }{\left ( 1+b+b^{2}\right ) ^{2}}\). Setting this to zero and solving for \(b\)\begin{align*} \left ( a^{2}+b^{2}\right ) -b\left ( 2b\right ) & =0\\ a^{2}+b^{2}-2b^{2} & =0\\ a^{2} & =b^{2} \end{align*}

Hence \(b=\pm a\). At \(b=a\), then \(g\left ( b\right ) =\frac{a}{a^{2}+a^{2}}=\frac{a}{2a^{2}}=\frac{1}{2a}\).

(c)

\begin{align*} \alpha & =\min \left ( a,g_{\max }\left ( b\right ) \right ) \\ & =\min \left ( a,\frac{1}{2a}\right ) \end{align*}

Solving \(a=\frac{1}{2a}\) or \(a^{2}=\frac{1}{2}\). Hence \(a=\frac{1}{\sqrt{2}}\) gives largest value.

4.5.1.3 Problem 17, section 1.10

Prove that \(y\left ( t\right ) =-1\) is only solution for \(y^{\prime }=t\left ( 1+y\right ) ,y\left ( 0\right ) =-1\)

solution

Since \(f=t\left ( 1+y\right ) \) is continuous for all \(t,y\) and \(f_{y}=t\) is continuous for all \(y\), then if we find a solution, it will be unique solution by theorem 2’. But \(y\left ( t\right ) =-1\) is a solution since we can show easily it satisfies the ODE. Hence it is the only solution over all \(t\) by theorem 2’

4.5.1.4 Problem 19, section 1.10

Find solution of \(y^{\prime }=t\sqrt{1-y^{2}},y\left ( 0\right ) =1\) other than \(y\left ( t\right ) =1\). Does this violate theorem 2’?

solution

\begin{align*} \frac{dy}{dt} & =t\sqrt{1-y^{2}}\\ \int \frac{dy}{\sqrt{1-y^{2}}} & =\int tdt\\ \arcsin \left ( y\right ) & =\frac{t^{2}}{2}+C \end{align*}

At \(t=0\)\[ \arcsin \left ( 1\right ) =C \] Hence solution is \(\arcsin \left ( y\right ) =\frac{t^{2}}{2}+\arcsin \left ( 1\right ) \) or \begin{align*} y\left ( t\right ) & =\sin \left ( \frac{t^{2}}{2}+\arcsin \left ( 1\right ) \right ) \\ & =\sin \left ( \frac{t^{2}}{2}+\frac{\pi }{2}\right ) \\ & =\sin \left ( \frac{1}{2}\left ( t^{2}+\pi \right ) \right ) \end{align*}

This does not violate theorem 2’ because \(f\left ( t,y\right ) =t\sqrt{1-y^{2}}\), hence \(f_{y}=\frac{-ty}{\sqrt{1-y^{2}}}\) which is not continuous at \(y=\pm 1\). But \(y=-1\) is the initial conditions. Hence theorem 2’ do not apply. Theorem 2’ applies in the region where both \(f,f_{y}\) are continuous.