3.1  First HW set

  3.1.1  problem 1
  3.1.2  problem 2
  3.1.3  Solution problem 3
  3.1.4  Solution problem 4
  3.1.5  Solution problem 5
  3.1.6  Key solution

Solve number of mechanical problems, generate velocity, acceleration and force diagrams, and the equations of motions. Add solution using Lagrangian as well. 5 problems

pict

3.1.1  problem 1

Velocity, acceleration and force diagrams

Generalized coordinates are: \(x,\theta \)

pict

pict

Deriving equations of motion using direct force method

There are 4 unknowns in the system, \(H,V,x^{\prime \prime },\theta ^{\prime \prime }\). Therefore, we need 4 equations.

Starting with equation of motion for mass \(M\) \begin{align*} \overrightarrow{\sum }F_x &= Mx'' \\ F(t) -kx -H &= Mx'' \tag{1} \end{align*}

For mass \(m\)

pict

\begin{align*} \overrightarrow{\sum }F_{x} &= m\left ( x''+L\theta '' \cos \theta -L(\theta ')^2 \sin \theta \right ) \\ H &= m\left (x'' + L\theta '' \cos \theta - L(\theta ')^2 \sin \theta \right ) \tag{2} \end{align*}

\begin{align*} \uparrow \sum F_{y} &= m\left ( -L\theta '' \sin \theta - L(\theta ')^2\cos \theta \right ) \\ V-mg &= - m\left ( L\theta '' \sin \theta +L(\theta ')^2\cos \theta \right ) \tag{3} \end{align*}

Take moments around mass \(m\), anti-clockwise is positive, hence\begin{align*} HL\cos \theta -VL\sin \theta & =0\\ V & =H\frac{\cos \theta }{\sin \theta } \end{align*}

Substituting the above in (3) gives\[ H\frac{\cos \theta }{\sin \theta }-mg=-m\left ( L\theta ^{\prime \prime }\sin \theta +L\left ( \theta ^{\prime }\right ) ^{2}\cos \theta \right ) \] Now, substituting \(H\) from (2) into the above gives\begin{align*} \frac{m\left ( x^{\prime \prime }+L\theta ^{\prime \prime }\cos \theta -L\left ( \theta ^{\prime }\right ) ^{2}\sin \theta \right ) \cos \theta }{\sin \theta }-mg & =-m\left ( L\theta ^{\prime \prime }\sin \theta +L\left ( \theta ^{\prime }\right ) ^{2}\cos \theta \right ) \\ \left ( x^{\prime \prime }+L\theta ^{\prime \prime }\cos \theta -L\left ( \theta ^{\prime }\right ) ^{2}\sin \theta \right ) \cos \theta -g\sin \theta & =-L\theta ^{\prime \prime }\sin ^{2}\theta -L\left ( \theta ^{\prime }\right ) ^{2}\cos \theta \sin \theta \\ L\theta ^{\prime \prime }\cos ^{2}\theta +L\theta ^{\prime \prime }\sin ^{2}\theta & =g\sin \theta -x^{\prime \prime }\cos \theta \\ \theta ^{\prime \prime } & =\frac{g\sin \theta -x^{\prime \prime }\cos \theta }{L} \end{align*}

Now, substituting \(H\) into (1) gives\begin{align*} F\left ( t\right ) -kx-H & =Mx^{\prime \prime }\\ F\left ( t\right ) -kx-m\left ( x^{\prime \prime }+L\theta ^{\prime \prime }\cos \theta -L\left ( \theta ^{\prime }\right ) ^{2}\sin \theta \right ) & =Mx^{\prime \prime }\\ x^{\prime \prime }\left ( M+m\right ) & =F\left ( t\right ) -kx-mL\theta ^{\prime \prime }\cos \theta +mL\left ( \theta ^{\prime }\right ) ^{2}\sin \theta \\ x^{\prime \prime } & =\frac{F\left ( t\right ) -kx-mL\theta ^{\prime \prime }\cos \theta +mL\left ( \theta ^{\prime }\right ) ^{2}\sin \theta }{M+m} \end{align*}

Therefore, the final EQM are

\begin{align} x^{\prime \prime } & =\frac{F\left ( t\right ) -kx-mL\theta ^{\prime \prime }\cos \theta +mL\left ( \theta ^{\prime }\right ) ^{2}\sin \theta }{M+m}\tag{4}\\ \theta ^{\prime \prime } & =\frac{g\sin \theta -x^{\prime \prime }\cos \theta }{L} \tag{5} \end{align}

Decouple the ODE’s

Substitute Eq. (5) into Eq. (4) gives\begin{align} x^{\prime \prime } & =\frac{F\left ( t\right ) -kx-mL\left [ \frac{g\sin \theta -x^{\prime \prime }\cos \theta }{L}\right ] \cos \theta +mL\left ( \theta ^{\prime }\right ) ^{2}\sin \theta }{M+m}\nonumber \\ & =\frac{F\left ( t\right ) -kx-mg\sin \theta \cos \theta +mx^{\prime \prime }\cos ^{2}\theta +mL\left ( \theta ^{\prime }\right ) ^{2}\sin \theta }{M+m}\nonumber \\ x^{\prime \prime }\left ( M+m\right ) -mx^{\prime \prime }\cos ^{2}\theta & =F\left ( t\right ) -kx-mg\sin \theta \cos \theta +mL\left ( \theta ^{\prime }\right ) ^{2}\sin \theta \nonumber \\ x^{\prime \prime } & =\frac{F\left ( t\right ) -kx-mg\sin \theta \cos \theta +mL\left ( \theta ^{\prime }\right ) ^{2}\sin \theta }{\left ( M+m-m\cos ^{2}\theta \right ) } \tag{4A} \end{align}

Also, we can solve for \(\theta ^{\prime \prime }\) by Substituting Eq. (4) into (5)\begin{align} \theta ^{\prime \prime } & =\frac{g\sin \theta -\left ( \frac{F\left ( t\right ) -kx-mL\theta ^{\prime \prime }\cos \theta +mL\left ( \theta ^{\prime }\right ) ^{2}\sin \theta }{M+m}\right ) \cos \theta }{L}\nonumber \\ L\theta ^{\prime \prime }\left ( M+m\right ) & =g\sin \theta \left ( M+m\right ) -\left ( F\left ( t\right ) -kx-mL\theta ^{\prime \prime }\cos \theta +mL\left ( \theta ^{\prime }\right ) ^{2}\sin \theta \right ) \cos \theta \nonumber \\ L\theta ^{\prime \prime }\left ( M+m\right ) & =g\sin \theta \left ( M+m\right ) -F\left ( t\right ) \cos \theta +kx\cos \theta +mL\theta ^{\prime \prime }\cos ^{2}\theta -mL\left ( \theta ^{\prime }\right ) ^{2}\sin \theta \cos \theta \nonumber \\ L\theta ^{\prime \prime }\left ( M+m\right ) -mL\theta ^{\prime \prime }\cos ^{2}\theta & =g\sin \theta \left ( M+m\right ) -F\left ( t\right ) \cos \theta +kx\cos \theta -mL\left ( \theta ^{\prime }\right ) ^{2}\sin \theta \cos \theta \nonumber \\ \theta ^{\prime \prime } & =\frac{g\sin \theta \left ( M+m\right ) -F\left ( t\right ) \cos \theta +kx\cos \theta -mL\left ( \theta ^{\prime }\right ) ^{2}\sin \theta \cos \theta }{L\left ( M+m-m\cos ^{2}\theta \right ) } \tag{5A} \end{align}

Eqs. (4A) and (5A) is what will be used to convert the system to state space since they are in decoupled form.

Convert to state space form

Using the decoupled ODE’s above, Eqs (4A) and (5A), and introducing 4 state variables \(x_{1},x_{2},x_{3}x_{4}\) we obtain\begin{align*} \begin{pmatrix} x_{1}\\ x_{2}\\ x_{3}\\ x_{4}\end{pmatrix} & =\begin{pmatrix} x\\ \theta \\ x^{\prime }\\ \theta ^{\prime }\end{pmatrix} \overset{\frac{d}{dt}}{\rightarrow }\begin{pmatrix} \dot{x}_{1}\\ \dot{x}_{2}\\ \dot{x}_{3}\\ \dot{x}_{4}\end{pmatrix} =\begin{pmatrix} x^{\prime }\\ \theta ^{\prime }\\ x^{\prime \prime }\\ \theta ^{\prime \prime }\end{pmatrix} \\\begin{pmatrix} \dot{x}_{1}\\ \dot{x}_{2}\\ \dot{x}_{3}\\ \dot{x}_{4}\end{pmatrix} & =\begin{pmatrix} x_{3}\\ x_{4}\\ \frac{F\left ( t\right ) -kx-mg\sin \theta \cos \theta +mL\left ( \theta ^{\prime }\right ) ^{2}\sin \theta }{\left ( M+m-m\cos ^{2}\theta \right ) }\\ \frac{g\sin \theta \left ( M+m\right ) -F\left ( t\right ) \cos \theta +kx\cos \theta -mL\left ( \theta ^{\prime }\right ) ^{2}\sin \theta \cos \theta }{L\left ( M+m-m\cos ^{2}\theta \right ) }\end{pmatrix} \\\begin{pmatrix} \dot{x}_{1}\\ \dot{x}_{2}\\ \dot{x}_{3}\\ \dot{x}_{4}\end{pmatrix} & =\begin{pmatrix} x_{3}\\ x_{4}\\ \frac{F\left ( t\right ) -kx_{1}-mg\sin x_{2}\cos x_{2}+mLx_{4}^{2}\sin x_{1}}{\left ( M+m-m\cos ^{2}x_{2}\right ) }\\ \frac{g\sin x_{2}\left ( M+m\right ) -F\left ( t\right ) \cos x_{2}+kx_{1}\cos x_{2}-mLx_{4}^{2}\sin x_{2}\cos x_{2}}{L\left ( M+m-m\cos ^{2}x_{2}\right ) }\end{pmatrix} \end{align*}

Deriving equations of motion using Lagrangian method (for verification)

To verify the solution above, try using Lagrangian method. Let \(L\) be the Lagrangian, and let \(T\) be the kinetic energy of the system, and \(U\) the potential energy.\[ L=T-U \] \[ T=\frac{1}{2}M\dot{x}^{2}+\frac{1}{2}mv^{2}\] Where \(v\) is the speed of the mass \(m\) which is

pict

\begin{align*} v^{2} & =\left ( \dot{x}+v_{x}\right ) ^{2}+v_{y}^{2}\\ & =\left ( \dot{x}+v\cos \theta \right ) ^{2}+\left ( v\sin \theta \right ) ^{2}\\ & =\left ( \dot{x}+L\dot{\theta }\cos \theta \right ) ^{2}+\left ( L\dot{\theta }\sin \theta \right ) ^{2}\\ & =\dot{x}^{2}+\left ( L\dot{\theta }\right ) ^{2}\cos ^{2}\theta +2\dot{x}L\dot{\theta }\cos \theta +\left ( L\dot{\theta }\right ) ^{2}\sin ^{2}\theta \\ & =\dot{x}^{2}+\left ( L\dot{\theta }\right ) ^{2}+2\dot{x}L\dot{\theta }\cos \theta \end{align*}

Hence\[ T=\frac{1}{2}M\dot{x}^{2}+\frac{1}{2}m\left ( \dot{x}^{2}+\left ( L\dot{\theta }\right ) ^{2}+2\dot{x}L\dot{\theta }\cos \theta \right ) \] For the potential energy, the mass \(M\) has\[ U_{M}=\frac{1}{2}kx^{2}\] and the mass \(m\) is losing PE, hence, assuming that the zero potential energy is at the ground level\[ U_{m}=mgL\cos \theta \] Therefore, \(L\) becomes\[ L=\frac{1}{2}M\dot{x}^{2}+\frac{1}{2}m\left ( \dot{x}^{2}+\left ( L\dot{\theta }\right ) ^{2}+2\dot{x}L\dot{\theta }\cos \theta \right ) -\left ( \frac{1}{2}kx^{2}+mgL\cos \theta \right ) \] To obtain equations of motion, evaluate \begin{equation} \frac{d}{dt}\left ( \frac{\partial L}{\partial \dot{x}}\right ) -\frac{\partial L}{\partial x}=F \tag{1} \end{equation} and\begin{equation} \frac{d}{dt}\left ( \frac{\partial L}{\partial \dot{\theta }}\right ) -\frac{\partial L}{\partial \theta }=0 \tag{2} \end{equation} For \(M\) we obtain\[ \frac{\partial L}{\partial \dot{x}}=M\dot{x}+m\dot{x}+mL\dot{\theta }\cos \theta \]

\[ \frac{d}{dt}\left ( \frac{\partial L}{\partial \dot{x}}\right ) =M\ddot{x}+m\ddot{x}+mL\ddot{\theta }\cos \theta -mL\dot{\theta }^{2}\sin \theta \]

\[ \frac{\partial L}{\partial x}=-kx \] Hence, for the mass \(M\), the equation of motion is\begin{align} M\ddot{x}+m\ddot{x}+mL\ddot{\theta }\cos \theta -mL\dot{\theta }^{2}\sin \theta +kx & =F\nonumber \\ \ddot{x} & =\frac{F-mL\ddot{\theta }\cos \theta +mL\dot{\theta }^{2}\sin \theta -kx}{M+m} \tag{4C} \end{align}

To find EQM for mass \(m\), evaluate \(\frac{d}{dt}\left ( \frac{\partial L}{\partial \dot{\theta }}\right ) -\frac{\partial L}{\partial \theta }=0\)

\[ \frac{\partial L}{\partial \dot{\theta }}=mL^{2}\dot{\theta }+m\dot{x}L\cos \theta \]

\[ \frac{d}{dt}\left ( \frac{\partial L}{\partial \dot{\theta }}\right ) =mL^{2}\ddot{\theta }+m\ddot{x}L\cos \theta -m\dot{x}L\dot{\theta }\sin \theta \]

\[ \frac{\partial L}{\partial \theta }=-m\dot{x}L\dot{\theta }\sin \theta +mgL\sin \theta \] Hence EQM is\begin{align} \frac{d}{dt}\left ( \frac{\partial L}{\partial \dot{\theta }}\right ) -\frac{\partial L}{\partial \theta } & =0\nonumber \\ mL^{2}\ddot{\theta }+m\ddot{x}L\cos \theta -m\dot{x}L\dot{\theta }\sin \theta -\left ( -m\dot{x}L\dot{\theta }\sin \theta +mgL\sin \theta \right ) & =0\nonumber \\ L\ddot{\theta }+\ddot{x}\cos \theta -\dot{x}\dot{\theta }\sin \theta +\dot{x}\dot{\theta }\sin \theta -g\sin \theta & =0\nonumber \\ L\ddot{\theta }+\ddot{x}\cos \theta -g\sin \theta & =0\nonumber \\ \ddot{\theta } & =\frac{g\sin \theta -\ddot{x}\cos \theta }{L} \tag{5C} \end{align}

Comparing Eqs. 4,5 to Eqs. 4C,5C, we see they are the same.

3.1.2  problem 2

Velocity, acceleration and force diagrams

Generalized coordinates are: \(x,\theta \)

pict

pict

Deriving equations of motion using direct force method

There are 4 unknowns in the system, \(H,V,x'',\theta ''\). Therefore, we need 4 equations.

Starting with equation of motion for mass \(M\)\begin{align} \overrightarrow{\sum }F_{x} & =Mx^{\prime \prime }\nonumber \\ F\left ( t\right ) -kx-H & =Mx^{\prime \prime } \tag{1} \end{align}

For rod

pict

\begin{align} \overrightarrow{\sum }F_{x} & =m\left ( x^{\prime \prime }+a\theta ^{\prime \prime }\cos \theta -a\left ( \theta ^{\prime }\right ) ^{2}\sin \theta \right ) \nonumber \\ H & =m\left ( x^{\prime \prime }+a\theta ^{\prime \prime }\cos \theta -a\left ( \theta ^{\prime }\right ) ^{2}\sin \theta \right ) \tag{2} \end{align}

\begin{align} \overrightarrow{\sum }F_{y}&=m\left ( -a\theta ^{\prime \prime }\sin \theta -a\left ( \theta ^{\prime }\right ) ^{2}\cos \theta \right ) \nonumber \\ V-mg & =-m\left ( a\theta ^{\prime \prime }\sin \theta +a\left ( \theta ^{\prime }\right ) ^{2}\cos \theta \right ) \tag{3} \end{align}

Take moments around c.g., anti-clockwise is positive, hence\begin{align*} Ha\cos \theta -Va\sin \theta & =-I_{g}\theta ^{\prime \prime }\\ V & =\frac{Ha\cos \theta +I_{g}\theta ^{\prime \prime }}{a\sin \theta } \end{align*}

Substituting the above in (3) gives\begin{align*} \frac{Ha\cos \theta +I_{g}\theta ^{\prime \prime }}{a\sin \theta }-mg & =-m\left ( a\theta ^{\prime \prime }\sin \theta +a\left ( \theta ^{\prime }\right ) ^{2}\cos \theta \right ) \\ H & =\frac{\left [ -m\left ( a\theta ^{\prime \prime }\sin \theta +a\left ( \theta ^{\prime }\right ) ^{2}\cos \theta \right ) +mg\right ] a\sin \theta -I_{g}\theta ^{\prime \prime }}{a\cos \theta } \end{align*}

Substituting \(H\) from (2) into the above gives\begin{align*} m \left (x''+ a \theta '' \cos \theta - a (\theta ')^2 \sin \theta \right ) & =\frac{\left [ -m\left ( a\theta '' \sin \theta + a \left ( \theta '\right )^2 \cos \theta \right ) +mg\right ] a\sin \theta -I_{g}\theta ''}{a\cos \theta }\\ ma \cos \theta x''+ m a^2 \cos \theta \theta '' \cos \theta - m a^2 \cos \theta (\theta ')^2 \sin \theta &= -m a^2 \theta '' \sin ^2 \theta - m a^2 \sin \theta (\theta ')^2 \cos \theta + m g a \sin \theta - I_g \theta ''\\ \cos \theta x'' + a \theta '' (\cos \theta )^2 - a \cos \theta \sin \theta (\theta ')^2 & =-a\theta '' (\sin \theta )^2 - a \sin \theta \cos \theta (\theta ')^2 + g \sin \theta - \frac{I_{g}\theta ''}{ma}\\ a\theta '' & =g\sin \theta -\cos \theta x'' - \frac{I_{g}\theta ''}{ma}\\ \theta '' \left ( a+\frac{I_{g}}{ma}\right ) & =g\sin \theta -\cos \theta x''\\ \theta '' & =\frac{mag\sin \theta -ma x''\cos \theta }{ma^{2}+I_{g}} \end{align*}

Substituting \(H\) into Eq. (1) gives\begin{align*} F\left ( t\right ) -kx-H &= Mx^{\prime \prime }\\ F\left ( t\right ) -kx-m\left ( x^{\prime \prime }+a\theta ^{\prime \prime }\cos \theta -a\left ( \theta ^{\prime }\right ) ^{2}\sin \theta \right ) & =Mx^{\prime \prime }\\ x^{\prime \prime }\left ( M+m\right ) & =F\left ( t\right ) -kx-ma\theta ^{\prime \prime }\cos \theta +ma\left ( \theta ^{\prime }\right ) ^{2}\sin \theta \\ x^{\prime \prime } & =\frac{F\left ( t\right ) -kx-ma\theta ^{\prime \prime }\cos \theta +ma\left ( \theta ^{\prime }\right ) ^{2}\sin \theta }{M+m} \end{align*}

Therefore, the final EQM are

\begin{align} x^{\prime \prime } & =\frac{F\left ( t\right ) -kx-ma\theta ^{\prime \prime }\cos \theta +ma\left ( \theta ^{\prime }\right ) ^{2}\sin \theta }{M+m}\tag{4}\\ \theta ^{\prime \prime } & =\frac{mag\sin \theta -max^{\prime \prime }\cos \theta }{ma^{2}+I_{g}} \tag{5} \end{align}

Decouple the ODE’s

Substitute Eq. (5) into Eq. (4) gives\[ x^{\prime \prime }=\frac{F\left ( t\right ) -kx-ma\left [ \frac{mag\sin \theta -max^{\prime \prime }\cos \theta }{ma^{2}+I_{g}}\right ] \cos \theta +ma\left ( \theta ^{\prime }\right ) ^{2}\sin \theta }{M+m}\] Let \(\left ( ma^{2}+I_{g}\right ) =I_{o}\), hence\begin{align} x^{\prime \prime } & =\frac{I_{o}F\left ( t\right ) -I_{o}kx-ma\left [ mag\sin \theta -max^{\prime \prime }\cos \theta \right ] \cos \theta +I_{o}ma\left ( \theta ^{\prime }\right ) ^{2}\sin \theta }{I_{o}\left ( M+m\right ) }\nonumber \\ I_{o}\left ( M+m\right ) x^{\prime \prime }-m^{2}a^{2}x^{\prime \prime }\cos \theta & =I_{o}F\left ( t\right ) -I_{o}kx-m^{2}a^{2}g\sin \theta \cos \theta +I_{o}ma\left ( \theta ^{\prime }\right ) ^{2}\sin \theta \nonumber \\ x^{\prime \prime } & =\frac{I_{o}F\left ( t\right ) -I_{o}kx-m^{2}a^{2}g\sin \theta \cos \theta +I_{o}ma\left ( \theta ^{\prime }\right ) ^{2}\sin \theta }{I_{o}\left ( M+m\right ) -m^{2}a^{2}\cos \theta } \tag{4A} \end{align}

Also, we can solve for \(\theta ^{\prime \prime }\) by Substituting Eq. (4) into (5)\[ \theta ^{\prime \prime }=\frac{mag\sin \theta -ma\left [ \frac{F\left ( t\right ) -kx-ma\theta ^{\prime \prime }\cos \theta +ma\left ( \theta ^{\prime }\right ) ^{2}\sin \theta }{M+m}\right ] \cos \theta }{ma^{2}+I_{g}}\] Let \(\left ( ma^{2}+I_{g}\right ) =I_{o}\), hence

Therefore, the final EQM are\begin{align*} x^{\prime \prime } & =\frac{I_{o}F\left ( t\right ) -I_{o}kx-m^{2}a^{2}g\sin \theta \cos \theta +I_{o}ma\left ( \theta ^{\prime }\right ) ^{2}\sin \theta }{I_{o}\left ( M+m\right ) -m^{2}a^{2}\cos \theta }\\ \theta ^{\prime \prime } & =\frac{\left ( M+m\right ) mag\sin \theta -maF\left ( t\right ) \cos \theta +makx\cos \theta -m^{2}a^{2}\left ( \theta ^{\prime }\right ) ^{2}\sin \theta \cos \theta }{I_{o}\left ( M+m\right ) -m^{2}a^{2}\cos ^{2}\theta } \end{align*}

Convert to state space form

Using the decoupled ODE’s above, Eqs (4A) and (5A), and introducing 4 state variables \(x_{1},x_{2},x_{3}x_{4}\) we obtain\begin{align*} \begin{pmatrix} x_{1}\\ x_{2}\\ x_{3}\\ x_{4}\end{pmatrix} & =\begin{pmatrix} x\\ \theta \\ x^{\prime }\\ \theta ^{\prime }\end{pmatrix} \overset{\frac{d}{dt}}{\rightarrow }\begin{pmatrix} \dot{x}_{1}\\ \dot{x}_{2}\\ \dot{x}_{3}\\ \dot{x}_{4}\end{pmatrix} =\begin{pmatrix} x^{\prime }\\ \theta ^{\prime }\\ x^{\prime \prime }\\ \theta ^{\prime \prime }\end{pmatrix} \\\begin{pmatrix} \dot{x}_{1}\\ \dot{x}_{2}\\ \dot{x}_{3}\\ \dot{x}_{4}\end{pmatrix} & =\begin{pmatrix} x_{3}\\ x_{4}\\ \frac{I_{o}F\left ( t\right ) -I_{o}kx-m^{2}a^{2}g\sin \theta \cos \theta +I_{o}ma\left ( \theta ^{\prime }\right ) ^{2}\sin \theta }{I_{o}\left ( M+m\right ) -m^{2}a^{2}\cos \theta }\\ \frac{\left ( M+m\right ) mag\sin \theta -maF\left ( t\right ) \cos \theta +makx\cos \theta -m^{2}a^{2}\left ( \theta ^{\prime }\right ) ^{2}\sin \theta \cos \theta }{I_{o}\left ( M+m\right ) -m^{2}a^{2}\cos ^{2}\theta }\end{pmatrix} \\\begin{pmatrix} \dot{x}_{1}\\ \dot{x}_{2}\\ \dot{x}_{3}\\ \dot{x}_{4}\end{pmatrix} & =\begin{pmatrix} x_{3}\\ x_{4}\\ \frac{I_{o}F\left ( t\right ) -I_{o}kx_{1}-m^{2}a^{2}g\sin x_{2}\cos x_{2}+I_{o}ma\ x_{4}^{2}\sin x_{2}}{I_{o}\left ( M+m\right ) -m^{2}a^{2}\cos x_{2}}\\ \frac{\left ( M+m\right ) mag\sin x_{2}-maF\left ( t\right ) \cos x_{2}+makx\cos x_{2}-m^{2}a^{2}x_{4}^{2}\sin x_{2}\cos x_{2}}{I_{o}\left ( M+m\right ) -m^{2}a^{2}\cos ^{2}x_{2}}\end{pmatrix} \end{align*}

Deriving equations of motion using Lagrangian method (for verification)

To verify the solution above, try using Lagrangian method. Let \(L\) be the Lagrangian, and let \(T\) be the kinetic energy of the system, and \(U\) the potential energy.\[ L=T-U \] \[ T=\frac{1}{2}M\dot{x}^{2}+\overset{\text{angular bar K.E.}}{\overbrace{\frac{1}{2}I_{g}\dot{\theta }^{2}}}+\overset{\text{linear\ bar\ K.E. of its c.g.}}{\overbrace{\frac{1}{2}m\left ( \dot{x}^{2}+\left ( a\dot{\theta }\right ) ^{2}+2\dot{x}a\dot{\theta }\cos \theta \right ) }}\] For the potential energy, the mass \(M\) has\[ U_{M}=\frac{1}{2}kx^{2}\] and the bar is losing PE, hence, assuming that the zero potential energy is at the ground level\[ U_{m}=mga\cos \theta \] Therefore, \(L\) becomes\[ L=\frac{1}{2}M\dot{x}^{2}+\frac{1}{2}I_{g}\dot{\theta }^{2}+\frac{1}{2}m\left ( \dot{x}^{2}+\left ( a\dot{\theta }\right ) ^{2}+2\dot{x}a\dot{\theta }\cos \theta \right ) -\left ( \frac{1}{2}kx^{2}+mga\cos \theta \right ) \] To obtain equations of motion, evaluate \begin{equation} \frac{d}{dt}\left ( \frac{\partial L}{\partial \dot{x}}\right ) -\frac{\partial L}{\partial x}=F \tag{1A} \end{equation} and\begin{equation} \frac{d}{dt}\left ( \frac{\partial L}{\partial \dot{\theta }}\right ) -\frac{\partial L}{\partial \theta }=0 \tag{2A} \end{equation} For \(M\) we obtain\[ \frac{\partial L}{\partial \dot{x}}=M\dot{x}+m\dot{x}+ma\dot{\theta }\cos \theta \] \[ \frac{d}{dt}\left ( \frac{\partial L}{\partial \dot{x}}\right ) =M\ddot{x}+m\ddot{x}+ma\ddot{\theta }\cos \theta -ma\dot{\theta }^{2}\sin \theta \] \[ \frac{\partial L}{\partial x}=-kx \] Hence, for the mass \(M\), the equation of motion is\begin{align} M\ddot{x}+m\ddot{x}+ma\ddot{\theta }\cos \theta -ma\dot{\theta }^{2}\sin \theta +kx & =F\nonumber \\ \ddot{x} & =\frac{F-kx-ma\ddot{\theta }\cos \theta +ma\dot{\theta }^{2}\sin \theta }{M+m} \tag{4C} \end{align}

To find EQM for mass \(m\), evaluate \(\frac{d}{dt}\left ( \frac{\partial L}{\partial \dot{\theta }}\right ) -\frac{\partial L}{\partial \theta }=0\)\[ \frac{\partial L}{\partial \dot{\theta }}=I_{g}\dot{\theta }+m\left ( a^{2}\dot{\theta }+\dot{x}a\cos \theta \right ) \]

\[ \frac{d}{dt}\left ( \frac{\partial L}{\partial \dot{\theta }}\right ) =I_{g}\ddot{\theta }+m\left ( a^{2}\ddot{\theta }-\dot{x}a\dot{\theta }\sin \theta +\ddot{x}a\cos \theta \right ) \]

\[ \frac{\partial L}{\partial \theta }=-m\dot{x}a\dot{\theta }\sin \theta +mga\sin \theta \] Hence EQM is\begin{align} \frac{d}{dt}\left ( \frac{\partial L}{\partial \dot{\theta }}\right ) -\frac{\partial L}{\partial \theta } & =0\nonumber \\ I_{g}\ddot{\theta }+m\left ( a^{2}\ddot{\theta }-\dot{x}a\dot{\theta }\sin \theta +\ddot{x}a\cos \theta \right ) +m\dot{x}a\dot{\theta }\sin \theta -mga\sin \theta & =0\nonumber \\ I_{g}\ddot{\theta }+ma^{2}\ddot{\theta }-m\dot{x}a\dot{\theta }\sin \theta +m\ddot{x}a\cos \theta +m\dot{x}a\dot{\theta }\sin \theta -mga\sin \theta & =0\nonumber \\ I_{g}\ddot{\theta }+ma^{2}\ddot{\theta }+m\ddot{x}a\cos \theta -mga\sin \theta & =0\nonumber \\ \ddot{\theta }\left ( I_{g}+ma^{2}\right ) & =mga\sin \theta -m\ddot{x}a\cos \theta \nonumber \\ \ddot{\theta } & =\frac{mga\sin \theta -m\ddot{x}a\cos \theta }{I_{g}+ma^{2}}\nonumber \\ & =\frac{mag\sin \theta -max^{\prime \prime }\cos \theta }{ma^{2}+I_{g}} \tag{5C} \end{align}

Compare (4A,5A) to (4C,5C) we see they are the same.

3.1.3  Solution problem 3

Velocity, acceleration and force diagrams

Generalized coordinates are: \(x,\theta ,r\)

pict

pict

Deriving equations of motion using direct force method

There are 4 unknowns in the system, \(x'',\theta '',r''\). Therefore, we need 3 equations.

Equation of motion for \(M\)\begin{align} \overrightarrow{\sum }F_{x} & =Mx^{\prime \prime }\nonumber \\ F\left ( t\right ) -kx-k_{p}\left ( r-l_{0}\right ) \sin \theta & =Mx^{\prime \prime } \tag{1} \end{align}

Equation of motion for \(m\), radial direction

\begin{align*} \searrow \sum F &= m\left ( r^{\prime \prime }+x^{\prime \prime }\sin \theta -\dot{\theta }^{2}r\right ) \\ mg\cos \theta -k_{p}\left ( r-l_{0}\right ) &= m\left ( r^{\prime \prime }+x^{\prime \prime }\sin \theta -\dot{\theta }^{2}r\right ) \tag{2} \end{align*}

Equation of motion for \(m\), \(\theta \) direction

\begin{align*} \circlearrowleft \sum F &= m\left ( \theta ^{\prime \prime }r+2r^{\prime }\theta ^{\prime }+x^{\prime \prime }\cos \theta \right ) \\ -mg\sin \theta &= m\left ( \theta ^{\prime \prime }r+2r^{\prime }\theta ^{\prime }+x^{\prime \prime }\cos \theta \right ) \tag{3} \end{align*}

The above are the 3 EQM needed. Now we simplify them. From Eq. (1)\begin{equation} x'' = \frac{F(t)}{M} - \frac{k}{M}x-\frac{k_p}{M} (r-l_0) \sin \theta \tag{1A} \end{equation} From Eq. (2)\begin{equation} r''=g\cos \theta -\frac{k_p}{m} (r-l_0)-x'' \sin \theta + \dot{\theta }^2 r \tag{2A} \end{equation} and from Eq. (3)\begin{equation} \theta ^{\prime \prime }=-\frac{g}{r}\sin \theta -\frac{2r^{\prime }}{r}\theta ^{\prime }-\frac{x^{\prime \prime }}{r}\cos \theta \tag{3A} \end{equation}

Decouple the ODE’s

Substitute Eq. (1A) into (2A)\begin{align*} r^{\prime \prime } & =g\cos \theta -\frac{k_{p}}{m}\left ( r-l_{0}\right ) -\left [ \frac{F\left ( t\right ) }{M}-\frac{k}{M}x-\frac{k_{p}}{M}\left ( r-l_{0}\right ) \sin \theta \right ] \sin \theta +\dot{\theta }^{2}r\\ & =g\cos \theta -\frac{k_{p}}{m}\left ( r-l_{0}\right ) -\frac{F\left ( t\right ) }{M}\sin \theta +\frac{k}{M}x\sin \theta +\frac{k_{p}}{M}\left ( r-l_{0}\right ) \sin ^{2}\theta +\dot{\theta }^{2}r \end{align*}

And Substitute Eq. (1A) into (3A)\begin{align*} \theta ^{\prime \prime } & =-\frac{g}{r}\sin \theta -\frac{2r^{\prime }}{r}\theta ^{\prime }-\frac{1}{r}\left [ \frac{F\left ( t\right ) }{M}-\frac{k}{M}x-\frac{k_{p}}{M}\left ( r-l_{0}\right ) \sin \theta \right ] \cos \theta \\ & =-\frac{g}{r}\sin \theta -\frac{2r^{\prime }}{r}\theta ^{\prime }-\frac{F\left ( t\right ) }{rM}\cos \theta +\frac{k}{rM}x\cos \theta +\frac{k_{p}}{rM}\left ( r-l_{0}\right ) \sin \theta \cos \theta \end{align*}

Therefore, the final EQM are

\begin{align*} x^{\prime \prime } & =\frac{F\left ( t\right ) }{M}-\frac{k}{M}x-\frac{k_{p}}{M}\left ( r-l_{0}\right ) \sin \theta \\ r^{\prime \prime } & =g\cos \theta -\frac{k_{p}}{m}\left ( r-l_{0}\right ) -\frac{F\left ( t\right ) }{M}\sin \theta +\frac{k}{M}x\sin \theta +\frac{k_{p}}{M}\left ( r-l_{0}\right ) \sin ^{2}\theta +\dot{\theta }^{2}r\\ \theta ^{\prime \prime } & =-\frac{g}{r}\sin \theta -\frac{2r^{\prime }}{r}\theta ^{\prime }-\frac{F\left ( t\right ) }{rM}\cos \theta +\frac{k}{rM}x\cos \theta +\frac{k_{p}}{rM}\left ( r-l_{0}\right ) \sin \theta \cos \theta \end{align*}

Convert to state space form

Using the decoupled ODE’s above, and introducing 6 state variables \(x_{1},x_{2},x_{3,}x_{4},x_{5},x_{6}\) we obtain\begin{align*} \begin{pmatrix} x_{1}\\ x_{2}\\ x_{3}\\ x_{4}\\ x_{5}\\ x_{6}\end{pmatrix} & =\begin{pmatrix} x\\ \theta \\ r\\ x^{\prime }\\ \theta ^{\prime }\\ r^{\prime }\end{pmatrix} \overset{\frac{d}{dt}}{\rightarrow }\begin{pmatrix} \dot{x}_{1}\\ \dot{x}_{2}\\ \dot{x}_{3}\\ \dot{x}_{4}\\ \dot{x}_{5}\\ \dot{x}_{6}\end{pmatrix} =\begin{pmatrix} x^{\prime }\\ \theta ^{\prime }\\ r^{\prime }\\ x^{\prime \prime }\\ \theta ^{\prime \prime }\\ r^{\prime \prime }\end{pmatrix} \\\begin{pmatrix} \dot{x}_{1}\\ \dot{x}_{2}\\ \dot{x}_{3}\\ \dot{x}_{4}\\ \dot{x}_{5}\\ \dot{x}_{6}\end{pmatrix} & =\begin{pmatrix} x_{4}\\ x_{5}\\ x_{6}\\ \frac{F\left ( t\right ) }{M}-\frac{k}{M}x-\frac{k_{p}}{M}\left ( r-l_{0}\right ) \sin \theta \\ -\frac{g}{r}\sin \theta -\frac{2r^{\prime }}{r}\theta ^{\prime }-\frac{F\left ( t\right ) }{rM}\cos \theta +\frac{k}{rM}x\cos \theta +\frac{k_{p}}{rM}\left ( r-l_{0}\right ) \sin \theta \cos \theta \\ g\cos \theta -\frac{k_{p}}{m}\left ( r-l_{0}\right ) -\frac{F\left ( t\right ) }{M}\sin \theta +\frac{k}{M}x\sin \theta +\frac{k_{p}}{M}\left ( r-l_{0}\right ) \sin ^{2}\theta +\dot{\theta }^{2}r \end{pmatrix} \\\begin{pmatrix} \dot{x}_{1}\\ \dot{x}_{2}\\ \dot{x}_{3}\\ \dot{x}_{4}\\ \dot{x}_{5}\\ \dot{x}_{6}\end{pmatrix} & =\begin{pmatrix} x_{4}\\ x_{5}\\ x_{6}\\ \frac{F\left ( t\right ) }{M}-\frac{k}{M}x_{1}-\frac{k_{p}}{M}\left ( x_{3}-l_{0}\right ) \sin x_{2}\\ -\frac{g}{r}\sin x_{2}-\frac{2x_{6}}{x_{3}}x_{5}-\frac{F\left ( t\right ) }{x_{3}M}\cos x_{2}+\frac{k}{x_{3}M}x_{1}\cos x_{2}+\frac{k_{p}}{x_{3}M}\left ( x_{3}-l_{0}\right ) \sin x_{2}\cos x_{2}\\ g\cos x_{2}-\frac{k_{p}}{m}\left ( x_{3}-l_{0}\right ) -\frac{F\left ( t\right ) }{M}\sin x_{2}+\frac{k}{M}x_{1}\sin x_{2}+\frac{k_{p}}{M}\left ( x_{3}-l_{0}\right ) \sin ^{2}x_{2}+x_{5}^{2}x_{3}\end{pmatrix} \end{align*}

3.1.4  Solution problem 4

Velocity, acceleration and force diagrams

Generalized coordinates are: \(x,\theta \)

pict

pict

Deriving equations of motion using direct force method

There are 3 unknowns in the system, \(x^{\prime \prime },\theta ^{\prime \prime },R\) Therefore, we need 3 equations.

Equation of motion for \(M\)\begin{align*} \uparrow \sum F &= Mx'' \\ F(t) -Mg - R\cos \theta &= M x'' \tag{1} \end{align*}

Equation of motion for \(m\), along \(\theta \)

\begin{align*} \circlearrowright \sum F &= m\left ( -x^{\prime \prime }\sin \theta +\theta ^{\prime \prime }L\right ) \\ mg\sin \theta &= m\left ( -x^{\prime \prime }\sin \theta +\theta ^{\prime \prime }L\right ) \end{align*}

Equation of motion for \(m\), along \(r\)

\begin{align*} \nearrow \sum F &= 0 \\ R-mg\cos \theta &= m\left ( x^{\prime \prime }\cos \theta -\left ( \theta ^{\prime }\right ) ^{2}L\right ) \tag{3} \end{align*}

From Eq. (2) we find EQM for \(\theta ^{\prime \prime }\)\begin{equation} \theta ^{\prime \prime }=\frac{g}{L}\sin \theta +\frac{x^{\prime \prime }}{L}\sin \theta \tag{4} \end{equation} From Eq. (3) find \(R\) and substitute result into (1).\[ R=mg\cos \theta +m\left ( x^{\prime \prime }\cos \theta -\left ( \theta ^{\prime }\right ) ^{2}L\right ) \] Hence Eq. (1) becomes\[ F\left ( t\right ) -Mg-\left [ mg\cos \theta +m\left ( x^{\prime \prime }\cos \theta -\left ( \theta ^{\prime }\right ) ^{2}L\right ) \right ] \cos \theta =Mx^{\prime \prime }\] Therefore\begin{align} x^{\prime \prime } & =\frac{F\left ( t\right ) }{M}-g-\frac{m}{M}g\cos ^{2}\theta -\frac{m}{M}\left ( x^{\prime \prime }\cos ^{2}\theta -\cos \theta \left ( \theta ^{\prime }\right ) ^{2}L\right ) \nonumber \\ x^{\prime \prime }+\frac{m}{M}x^{\prime \prime }\cos ^{2}\theta & =\frac{F\left ( t\right ) }{M}-g-\frac{m}{M}g\cos ^{2}\theta +\frac{m}{M}\cos \theta \left ( \theta ^{\prime }\right ) ^{2}L\nonumber \\ x^{\prime \prime }\left ( 1+\frac{m}{M}\cos ^{2}\theta \right ) & =\frac{F\left ( t\right ) }{M}-g-\frac{m}{M}g\cos ^{2}\theta +\frac{m}{M}\cos \theta \left ( \theta ^{\prime }\right ) ^{2}L\nonumber \\ x^{\prime \prime }\left ( M+m\cos ^{2}\theta \right ) & =F\left ( t\right ) -gM-mg\cos ^{2}\theta +m\cos \theta \left ( \theta ^{\prime }\right ) ^{2}L\nonumber \\ x^{\prime \prime } & =\frac{F\left ( t\right ) -gM-mg\cos ^{2}\theta +m\cos \theta \left ( \theta ^{\prime }\right ) ^{2}L}{M+m\cos ^{2}\theta } \tag{5} \end{align}

Therefore, the EQM are\begin{align*} x^{\prime \prime } & =\frac{F\left ( t\right ) -gM-mg\cos ^{2}\theta +m\cos \theta \left ( \theta ^{\prime }\right ) ^{2}L}{M+m\cos ^{2}\theta }\\ \theta ^{\prime \prime } & =\frac{g}{L}\sin \theta +\frac{x^{\prime \prime }}{L}\sin \theta \end{align*}

Decouple the ODE’s

\[ x^{\prime \prime }=\frac{F\left ( t\right ) -gM-mg\cos ^{2}\theta +m\cos \theta \left ( \theta ^{\prime }\right ) ^{2}L}{M+m\cos ^{2}\theta }\] and\begin{align*} \theta ^{\prime \prime } & =\frac{g}{L}\sin \theta +\frac{x^{\prime \prime }}{L}\sin \theta \\ & =\frac{g}{L}\sin \theta +\frac{\sin \theta }{L}\left [ \frac{F\left ( t\right ) -gM-mg\cos ^{2}\theta +m\cos \theta \left ( \theta ^{\prime }\right ) ^{2}L}{M+m\cos ^{2}\theta }\right ] \\ & =\frac{g}{L}\sin \theta +\frac{F\left ( t\right ) \sin \theta -gM\sin \theta -mg\cos ^{2}\theta \sin \theta +m\cos \theta \left ( \theta ^{\prime }\right ) ^{2}L\sin \theta }{L\left ( M+m\cos ^{2}\theta \right ) } \end{align*}

Therefore, the final EQM are

\begin{align*} x^{\prime \prime } & =\frac{F\left ( t\right ) -gM-mg\cos ^{2}\theta +m\cos \theta \left ( \theta ^{\prime }\right ) ^{2}L}{M+m\cos ^{2}\theta }\\ \theta ^{\prime \prime } & =\frac{g}{L}\sin \theta +\frac{F\left ( t\right ) \sin \theta -gM\sin \theta -mg\cos ^{2}\theta \sin \theta +m\cos \theta \left ( \theta ^{\prime }\right ) ^{2}L\sin \theta }{L\left ( M+m\cos ^{2}\theta \right ) } \end{align*}

Convert to state space form

Using the decoupled ODE’s above, and introducing 4 state variables \(x_{1},x_{2},x_{3,}x_{4}\) we obtain\begin{align*} \begin{pmatrix} x_{1}\\ x_{2}\\ x_{3}\\ x_{4}\end{pmatrix} & =\begin{pmatrix} x\\ \theta \\ x^{\prime }\\ \theta ^{\prime }\end{pmatrix} \overset{\frac{d}{dt}}{\rightarrow }\begin{pmatrix} \dot{x}_{1}\\ \dot{x}_{2}\\ \dot{x}_{3}\\ \dot{x}_{4}\end{pmatrix} =\begin{pmatrix} x^{\prime }\\ \theta ^{\prime }\\ x^{\prime \prime }\\ \theta ^{\prime \prime }\end{pmatrix} \\\begin{pmatrix} \dot{x}_{1}\\ \dot{x}_{2}\\ \dot{x}_{3}\\ \dot{x}_{4}\end{pmatrix} & =\begin{pmatrix} x_{3}\\ x_{4}\\ \frac{F\left ( t\right ) -gM-mg\cos ^{2}\theta +m\cos \theta \left ( \theta ^{\prime }\right ) ^{2}L}{M+m\cos ^{2}\theta }\\ \frac{g}{L}\sin \theta +\frac{F\left ( t\right ) \sin \theta -gM\sin \theta -mg\cos ^{2}\theta \sin \theta +m\cos \theta \left ( \theta ^{\prime }\right ) ^{2}L\sin \theta }{L\left ( M+m\cos ^{2}\theta \right ) }\end{pmatrix} \\ & =\begin{pmatrix} x_{3}\\ x_{4}\\ \frac{F\left ( t\right ) -gM-mg\cos ^{2}x_{2}+m\cos x_{2}x_{4}^{2}L}{M+m\cos ^{2}x_{2}}\\ \frac{g}{L}\sin x_{2}+\frac{F\left ( t\right ) \sin x_{2}-gM\sin x_{2}-mg\cos ^{2}x_{2}\sin x_{2}+m\cos x_{2}x_{4}^{2}L\sin x_{2}}{L\left ( M+m\cos ^{2}x_{2}\right ) }\end{pmatrix} \end{align*}

Solving using Lagrange

pict

pict

3.1.5  Solution problem 5

pict

pict

The vertical reaction \(V\) is not needed since there is no acceleration in the vertical direction. The above diagram shows forces assuming the spring is in compression. The unknowns are \(\theta ^{\prime \prime },x^{\prime \prime },H\), hence we need 3 equations.

For mass \(M\)\begin{align*} \rightarrow \sum F&= Mx^{\prime \prime }\\ F\left ( t\right ) +kR\theta +bR\theta ^{\prime }+H &=Mx^{\prime \prime } \end{align*}

or mass \(m\)

\begin{align*} \rightarrow \sum F&= 0 \\\nonumber \\ -kR\theta -bR\theta ^{\prime }-H &=m\left ( x^{\prime \prime }+\theta ^{\prime \prime }R\right ) \end{align*}

and moments around the origin of the disk, anti-clockwise positive

\begin{align} -HR & =-I_{g}\theta ^{\prime \prime }\nonumber \\ H & =\frac{I_{g}\theta ^{\prime \prime }}{R}\tag{3} \end{align}

Substitute (3) into (2) gives\begin{align*} -kR^{2}\theta -bR^{2}\theta ^{\prime }-I_{g}\theta ^{\prime \prime } & =mR\left ( x^{\prime \prime }+\theta ^{\prime \prime }R\right ) \\ \theta ^{\prime \prime }\left ( I_{g}+mR^{2}\right ) & =-mRx^{\prime \prime }-kR^{2}\theta -bR^{2}\theta ^{\prime }\\ \theta ^{\prime \prime } & =\frac{-\left ( mRx^{\prime \prime }+kR^{2}\theta +bR^{2}\theta ^{\prime }\right ) }{I_{g}+mR^{2}} \end{align*}

Let \(I_{g}+mR^{2}=I_{o}\) hence the above becomes\[ \theta ^{\prime \prime }=-\frac{mRx^{\prime \prime }+kR^{2}\theta +bR^{2}\theta ^{\prime }}{I_{o}}\] Therefore, the EQM are\begin{align} Mx^{\prime \prime } & =F\left ( t\right ) +kR\theta +bR\theta ^{\prime }+H\nonumber \\ x^{\prime \prime } & =\frac{F\left ( t\right ) +kR\theta +bR\theta ^{\prime }+\frac{I_{g}\theta ^{\prime \prime }}{R}}{M}\nonumber \\ x^{\prime \prime } & =\frac{RF\left ( t\right ) +kR^{2}\theta +bR^{2}\theta ^{\prime }-I_{g}\theta ^{\prime \prime }}{MR}\tag{4}\\ \theta ^{\prime \prime } & =-\frac{mRx^{\prime \prime }+kR^{2}\theta +bR^{2}\theta ^{\prime }}{I_{o}}\tag{5} \end{align}

Decouple the ODE’s

Substitute Eq. (5)  into (4) gives\begin{align*} x^{\prime \prime } & =\frac{RF\left ( t\right ) +kR^{2}\theta +bR^{2}\theta ^{\prime }-I_{g}\left [ -\frac{mRx^{\prime \prime }+kR^{2}\theta +bR^{2}\theta ^{\prime }}{I_{o}}\right ] }{MR}\\ x^{\prime \prime }MRI_{o} & =I_{o}RF\left ( t\right ) +kI_{o}R^{2}\theta +bI_{o}R^{2}\theta ^{\prime }+I_{g}\left [ mRx^{\prime \prime }+kR^{2}\theta +bR^{2}\theta ^{\prime }\right ] \\ x^{\prime \prime } & =\frac{I_{o}F\left ( t\right ) +kI_{o}R\theta +bI_{o}R\theta ^{\prime }+I_{g}\left [ kR\theta +bR\theta ^{\prime }\right ] }{MI_{o}-I_{g}m} \end{align*}

Now to decouple the \(\theta ^{\prime \prime }\), substituting Eq. (4) into (5) gives\begin{align*} \theta ^{\prime \prime } & =-\frac{mR\left [ \frac{RF\left ( t\right ) +kR^{2}\theta +bR^{2}\theta ^{\prime }-I_{g}\theta ^{\prime \prime }}{MR}\right ] +kR^{2}\theta +bR^{2}\theta ^{\prime }}{I_{o}}\\ \theta ^{\prime \prime }I_{o} & =-mR\left [ \frac{RF\left ( t\right ) +kR^{2}\theta +bR^{2}\theta ^{\prime }-I_{g}\theta ^{\prime \prime }}{MR}\right ] -kR^{2}\theta -bR^{2}\theta ^{\prime }\\ \theta ^{\prime \prime }\left ( I_{o}M-mI_{g}\right ) & =-mRF\left ( t\right ) -mkR^{2}\theta -mbR^{2}\theta ^{\prime }-MkR^{2}\theta -MbR^{2}\theta ^{\prime }\\ \theta ^{\prime \prime } & =\frac{-mRF\left ( t\right ) -mkR^{2}\theta -mbR^{2}\theta ^{\prime }-MkR^{2}\theta -MbR^{2}\theta ^{\prime }}{MI_{o}-I_{g}m} \end{align*}

Therefore, the final EQM are

\begin{align*} x^{\prime \prime } & =\frac{I_{o}F\left ( t\right ) +kI_{o}R\theta +bI_{o}R\theta ^{\prime }+I_{g}\left [ kR\theta +bR\theta ^{\prime }\right ] }{MI_{o}-I_{g}m}\\ \theta ^{\prime \prime } & =\frac{-mRF\left ( t\right ) -mkR^{2}\theta -mbR^{2}\theta ^{\prime }-MkR^{2}\theta -MbR^{2}\theta ^{\prime }}{MI_{o}-I_{g}m} \end{align*}

Convert to state space form

Using the decoupled ODE’s above, and introducing 4 state variables \(x_{1},x_{2},x_{3,}x_{4}\) we obtain\begin{align*} \begin{pmatrix} x_{1}\\ x_{2}\\ x_{3}\\ x_{4}\end{pmatrix} & =\begin{pmatrix} x\\ \theta \\ x^{\prime }\\ \theta ^{\prime }\end{pmatrix} \overset{\frac{d}{dt}}{\rightarrow }\begin{pmatrix} \dot{x}_{1}\\ \dot{x}_{2}\\ \dot{x}_{3}\\ \dot{x}_{4}\end{pmatrix} =\begin{pmatrix} x^{\prime }\\ \theta ^{\prime }\\ x^{\prime \prime }\\ \theta ^{\prime \prime }\end{pmatrix} \\\begin{pmatrix} \dot{x}_{1}\\ \dot{x}_{2}\\ \dot{x}_{3}\\ \dot{x}_{4}\end{pmatrix} & =\begin{pmatrix} x_{3}\\ x_{4}\\ \frac{I_{o}F\left ( t\right ) +kI_{o}R\theta +bI_{o}R\theta ^{\prime }+I_{g}\left [ kR\theta +bR\theta ^{\prime }\right ] }{MI_{o}-I_{g}m}\\ \frac{-mRF\left ( t\right ) -mkR^{2}\theta -mbR^{2}\theta ^{\prime }-MkR^{2}\theta -MbR^{2}\theta ^{\prime }}{MI_{o}-I_{g}m}\end{pmatrix} \\ & =\begin{pmatrix} x_{3}\\ x_{4}\\ \frac{I_{o}F\left ( t\right ) +kI_{o}Rx_{2}+bI_{o}Rx_{4}+I_{g}\left [ kRx_{2}+bRx_{4}\right ] }{MI_{o}-I_{g}m}\\ \frac{-mRF\left ( t\right ) -mkR^{2}x_{2}-mbR^{2}x_{4}-MkR^{2}x_{2}-MbR^{2}x_{4}}{MI_{o}-I_{g}m}\end{pmatrix} \end{align*}

Solving using Lagrangian method

\begin{align*} T & =\frac{1}{2}M\dot{x}^{2}+\frac{1}{2}m\left ( \dot{x}+R\dot{\theta }\right ) ^{2}+\frac{1}{2}I_{g}\dot{\theta }^{2}\\ V & =\frac{1}{2}k\left ( R\theta \right ) ^{2} \end{align*}

Hence

\begin{align*} L & =T-V\\ & =\left [ \frac{1}{2}M\dot{x}^{2}+\frac{1}{2}m\left ( \dot{x}+R\dot{\theta }\right ) ^{2}+\frac{1}{2}I_{g}\dot{\theta }^{2}\right ] -\frac{1}{2}k\left ( R\theta \right ) ^{2}\\ & =\frac{1}{2}M\dot{x}^{2}+\frac{1}{2}m\left ( \dot{x}^{2}+R^{2}\dot{\theta }^{2}+2\dot{x}\dot{\theta }R\right ) +\frac{1}{2}I_{g}\dot{\theta }^{2}-\frac{1}{2}kR^{2}\theta ^{2} \end{align*}

and

\begin{align*} \frac{\partial L}{\partial \dot{x}} & =M\dot{x}+m\dot{x}+m\dot{\theta }R\\ \frac{\partial L}{\partial x} & =0\\ \frac{d}{dt}\frac{\partial L}{\partial \dot{x}} & =M\ddot{x}+m\ddot{x}+m\ddot{\theta }R \end{align*}

Hence, for \(x\), the EQM is

\[ M\ddot{x}+m\ddot{x}+m\ddot{\theta }R=Q_{x}\]

Where \(Q_{x}\) is the genralized force which is

\begin{align*} \delta W & =\frac{F\delta x+\left ( kR\theta \right ) \delta x+\left ( bR\dot{\theta }\right ) \delta x}{\delta x}\\ & =F+bR\dot{\theta }+kR\theta \end{align*}

hence

\begin{align*} M\ddot{x}+m\ddot{x}+m\ddot{\theta }R & =F\left ( t\right ) +bR\dot{\theta }+kR\theta \\ \ddot{x} & =\frac{F\left ( t\right ) +bR\dot{\theta }+kR\theta -m\ddot{\theta }R}{M+m} \end{align*}

Since \(I_{g}=\frac{mR^{2}}{2}\), then the above can be written as

\[ \ddot{x}=\frac{RF\left ( t\right ) +bR^{2}\dot{\theta }+kR^{2}\theta -2I_{g}\ddot{\theta }}{R\left ( M+m\right ) }\]

For \(\theta \), the EQM is

\begin{align*} \frac{\partial L}{\partial \dot{\theta }} & =m\left ( R^{2}\dot{\theta }+\dot{x}R\right ) +I_{g}\dot{\theta }\\ \frac{\partial L}{\partial \theta } & =-kR^{2}\theta \\ \frac{d}{dt}\frac{\partial L}{\partial \dot{x}} & =m\left ( R^{2}\ddot{\theta }+\ddot{x}R\right ) +I_{g}\ddot{\theta } \end{align*}

Hence

\[ m\left ( R^{2}\ddot{\theta }+\ddot{x}R\right ) +I_{g}\ddot{\theta }+kR^{2}\theta =F_{\theta }\]

In this case, \(\delta W=-\frac{\left ( bR\dot{\theta }\right ) R\delta \theta }{\delta \theta }\), hence \(F_{\theta }=-bR^{2}\dot{\theta }\), therefore, the EQM is

\begin{align*} m\left ( R^{2}\ddot{\theta }+\ddot{x}R\right ) +I_{g}\ddot{\theta }+kR^{2}\theta & =-bR^{2}\dot{\theta }\\ \ddot{\theta } & =\frac{-bR^{2}\dot{\theta }-kR^{2}\theta -m\ddot{x}R}{I_{g}+mR^{2}}\\ & =-\frac{bR^{2}\dot{\theta }+kR^{2}\theta +m\ddot{x}R}{I_{o}} \end{align*}

Which is the same as Eq. (5) above.

l.1256 — TeX4ht warning — “SaveEverypar’s: 2 at “begindocument and 3 “enddocument —

3.1.6  Key solution

pict
pict