5.3 Problem 7.2 part (e) in Textbook
Starting with
\begin{align} q^{\prime }\left ( t\right ) +\frac {\left ( I_{1}-I_{3}\right ) }{I_{2}}\Omega \ r\left ( t\right ) & =0\tag {1}\\ r^{\prime }\left ( t\right ) +\frac {\left ( I_{2}-I_{1}\right ) }{I_{3}}\Omega \ q\left ( t\right ) & =0\tag {2}\end{align}
To decouple the ODE’s, take derivatives and substituting back, we find
\begin{align} q^{\prime \prime }\left ( t\right ) +k\ q\left ( t\right ) & =0\tag {3}\\ r^{\prime \prime }\left ( t\right ) +k\ r\left ( t\right ) & =0\tag {4}\end{align}
Where \(k=\frac {\left ( I_{1}-I_{3}\right ) \left ( I_{2}-I_{2}\right ) }{I_{2}I_{3}}\Omega ^{2}\). The solution to the above is (for stability \(k>0\) )
\begin{align} q\left ( t\right ) & =A\cos \sqrt {k}t+B\sin \sqrt {k}t\tag {5}\\ r\left ( t\right ) & =C\cos \sqrt {k}t+D\sin \sqrt {k}t\tag {6}\end{align}
Now, \(q\left ( 0\right ) =\frac {\text {Imp}}{I_{yy}}\), hence \(A=\frac {\text {Imp}}{I_{yy}}\) . To find \(B\) take derivative
\begin{equation} q^{\prime }\left ( t\right ) =-\sqrt {k}\frac {\text {Imp}}{I_{yy}}\sin \sqrt {k}t+B\sqrt {k}\cos \sqrt {k}t\tag {7}\end{equation}
But at
\(t=0\) then we go back and use Eq. (1) to find
\(q^{\prime }\left ( 0\right ) \),
and equate the result to the above at
\(t=0\). Eq (1), at
\(t=0\), gives
\[ q^{\prime }\left ( 0\right ) +\frac {\left ( I_{1}-I_{3}\right ) }{I_{2}}\Omega \ r\left ( 0\right ) =0 \]
But
\(r\left ( 0\right ) =0\,\), hence
\(q^{\prime }\left ( 0\right ) =0\), and so this results in
\(B=0\) in Eq.(7), hence the solution for
\(q\left ( t\right ) \) is
\[ q\left ( t\right ) =\frac {\text {Imp}}{I_{yy}}\cos \sqrt {k}t \]
We do the same for
\(r\left ( t\right ) .\) From Eq. (6) we find that
\(C=0\) since
\(r\left ( 0\right ) =0\),
so now
\(r\left ( t\right ) \) reduces to
\[ r\left ( t\right ) =D\sin \sqrt {k}t \]
Hence
\begin{equation} r^{\prime }\left ( t\right ) =\sqrt {k}D\cos \sqrt {k}t\tag {8}\end{equation}
To find
\(D\), then we go back and use Eq. (2) to find
\(r^{\prime }\left ( 0\right ) \), and equate
the result to the above at
\(t=0\). Eq (2), at
\(t=0\), gives
\[ r^{\prime }\left ( 0\right ) +\frac {\left ( I_{2}-I_{1}\right ) }{I_{3}}\Omega \ q\left ( 0\right ) =0 \]
But
\(q\left ( 0\right ) =\frac {\text {Imp}}{I_{yy}}\), hence
\[ r^{\prime }\left ( 0\right ) =-\frac {\left ( I_{2}-I_{1}\right ) }{I_{3}}\Omega \ \frac {\text {Imp}}{I_{yy}}\]
Therefore, equate the
above to Eq. (8) evaluated at
\(t=0\,\ \)gives
\[ D=-\frac {\left ( I_{2}-I_{1}\right ) }{I_{3}\sqrt {k}}\Omega \ \frac {\text {Imp}}{I_{yy}}\]
Hence Eq. (6) becomes
\[ r\left ( t\right ) =\left ( -\frac {\left ( I_{2}-I_{1}\right ) }{I_{3}\sqrt {k}}\Omega \ \frac {\text {Imp}}{I_{yy}}\right ) \sin \sqrt {k}t \]
so
\(r\left ( t\right ) \) is sinusoidal as
well.