2.1.79 Problem 78
Internal
problem
ID
[10065]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
78
Date
solved
:
Monday, December 29, 2025 at 09:04:36 PM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
2.1.79.1 Solved using first_order_ode_dAlembert
1.503 (sec)
Entering first order ode dAlembert solver
\begin{align*}
\frac {y^{\prime } y}{1+\frac {\sqrt {1+{y^{\prime }}^{2}}}{2}}&=-x \\
y \left (0\right ) &= 3 \\
\end{align*}
Let \(p=y^{\prime }\) the ode becomes \begin{align*} \frac {p y}{1+\frac {\sqrt {p^{2}+1}}{2}} = -x \end{align*}
Solving for \(y\) from the above results in
\begin{align*}
\tag{1} y &= -\frac {x \left (2+\sqrt {p^{2}+1}\right )}{2 p} \\
\end{align*}
This has the form \begin{align*} y=x f(p)+g(p)\tag {*} \end{align*}
Where \(f,g\) are functions of \(p=y'(x)\) . The above ode is dAlembert ode which is now solved.
Taking derivative of (*) w.r.t. \(x\) gives
\begin{align*} p &= f+(x f'+g') \frac {dp}{dx}\\ p-f &= (x f'+g') \frac {dp}{dx}\tag {2} \end{align*}
Comparing the form \(y=x f + g\) to (1A) shows that
\begin{align*} f &= \frac {-2-\sqrt {p^{2}+1}}{2 p}\\ g &= 0 \end{align*}
Hence (2) becomes
\begin{equation}
\tag{2A} p -\frac {-2-\sqrt {p^{2}+1}}{2 p} = \left (-\frac {x}{2 \sqrt {p^{2}+1}}+\frac {x}{p^{2}}+\frac {x \sqrt {p^{2}+1}}{2 p^{2}}\right ) p^{\prime }\left (x \right )
\end{equation}
The singular solution is found by setting \(\frac {dp}{dx}=0\) in the above which gives
\begin{align*} p -\frac {-2-\sqrt {p^{2}+1}}{2 p} = 0 \end{align*}
No valid singular solutions found.
The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}x}}\neq 0\) . From eq. (2A). This results in
\begin{equation}
\tag{3} p^{\prime }\left (x \right ) = \frac {p \left (x \right )-\frac {-2-\sqrt {p \left (x \right )^{2}+1}}{2 p \left (x \right )}}{-\frac {x}{2 \sqrt {p \left (x \right )^{2}+1}}+\frac {x}{p \left (x \right )^{2}}+\frac {x \sqrt {p \left (x \right )^{2}+1}}{2 p \left (x \right )^{2}}}
\end{equation}
This ODE is now solved for \(p \left (x \right )\) .
No inversion is needed.
The ode
\begin{equation}
p^{\prime }\left (x \right ) = \frac {\left (2 p \left (x \right )^{2}+\sqrt {p \left (x \right )^{2}+1}+2\right ) \sqrt {p \left (x \right )^{2}+1}\, p \left (x \right )}{x \left (1+2 \sqrt {p \left (x \right )^{2}+1}\right )}
\end{equation}
is separable as it can be written as \begin{align*} p^{\prime }\left (x \right )&= \frac {\left (2 p \left (x \right )^{2}+\sqrt {p \left (x \right )^{2}+1}+2\right ) \sqrt {p \left (x \right )^{2}+1}\, p \left (x \right )}{x \left (1+2 \sqrt {p \left (x \right )^{2}+1}\right )}\\ &= f(x) g(p) \end{align*}
Where
\begin{align*} f(x) &= \frac {1}{x}\\ g(p) &= \frac {\left (2 p^{2}+\sqrt {p^{2}+1}+2\right ) \sqrt {p^{2}+1}\, p}{1+2 \sqrt {p^{2}+1}} \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(p)} \,dp} &= \int { f(x) \,dx} \\
\int { \frac {1+2 \sqrt {p^{2}+1}}{\left (2 p^{2}+\sqrt {p^{2}+1}+2\right ) \sqrt {p^{2}+1}\, p}\,dp} &= \int { \frac {1}{x} \,dx} \\
\end{align*}
\[
\ln \left (\frac {p \left (x \right )}{\sqrt {p \left (x \right )^{2}+1}}\right )=\ln \left (x \right )+c_1
\]
Taking the exponential of both sides the solution becomes \[
\frac {p \left (x \right )}{\sqrt {p \left (x \right )^{2}+1}} = c_1 x
\]
We now need to find
the singular solutions, these are found by finding for what values \(g(p)\) is zero, since we had to divide
by this above. Solving \(g(p)=0\) or \[
\frac {\left (2 p^{2}+\sqrt {p^{2}+1}+2\right ) \sqrt {p^{2}+1}\, p}{1+2 \sqrt {p^{2}+1}}=0
\]
for \(p \left (x \right )\) gives \begin{align*} p \left (x \right )&=0\\ p \left (x \right )&=-i \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
Therefore the solutions found are
\begin{align*}
\frac {p \left (x \right )}{\sqrt {p \left (x \right )^{2}+1}} &= c_1 x \\
p \left (x \right ) &= 0 \\
p \left (x \right ) &= -i \\
\end{align*}
Substituing the above solution for \(p\) in (2A) gives \begin{align*}
y &= \frac {-2-\sqrt {-\frac {c_1^{2} x^{2}}{c_1^{2} x^{2}-1}+1}}{2 c_1 \sqrt {-\frac {1}{c_1^{2} x^{2}-1}}} \\
y &= -i x \\
\end{align*}
Simplifying
the above gives \begin{align*}
y &= -\frac {2+\sqrt {-\frac {1}{c_1^{2} x^{2}-1}}}{2 \sqrt {-\frac {1}{c_1^{2} x^{2}-1}}\, c_1} \\
y &= -i x \\
\end{align*}
Solving for initial conditions the solution is \begin{align*}
y &= \frac {1+\sqrt {-\frac {1}{x^{2}-4}}}{\sqrt {-\frac {1}{x^{2}-4}}} \\
y &= -i x \\
\end{align*}
The above solution was found not to
satisfy the ode or the IC. Hence it is removed.
Figure 2.161: Solutions plot
Summary of solutions found
\begin{align*}
y &= \frac {1+\sqrt {-\frac {1}{x^{2}-4}}}{\sqrt {-\frac {1}{x^{2}-4}}} \\
\end{align*}
2.1.79.2 ✓ Maple. Time used: 4.414 (sec). Leaf size: 29
ode := diff ( y ( x ), x )* y ( x )/(1+1/2*(1+ diff ( y ( x ), x )^2)^(1/2)) = -x;
ic :=[ y (0) = 3];
dsolve ([ ode , op ( ic )], y ( x ), singsol=all);
\begin{align*}
y &= -3+\sqrt {-x^{2}+36} \\
y &= 1+\sqrt {-x^{2}+4} \\
\end{align*}
Maple trace
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful
2.1.79.3 ✓ Mathematica. Time used: 0.366 (sec). Leaf size: 35
ode = D [ y [ x ], x ]* y [ x ]/(1+1/2* Sqrt [1+( D [ y [ x ], x ])^2])==- x ;
ic = y [0]==3;
DSolve [{ ode , ic }, y [ x ], x , IncludeSingularSolutions -> True ]
\begin{align*} y(x)&\to \sqrt {4-x^2}+1\\ y(x)&\to \sqrt {36-x^2}-3 \end{align*}
2.1.79.4 ✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(x + y(x)*Derivative(y(x), x)/(sqrt(Derivative(y(x), x)**2 + 1)/2 + 1),0)
ics = {y(0): 3}
dsolve ( ode , func = y ( x ), ics = ics )
Timed Out