Internal
problem
ID
[10063] Book
:
Own
collection
of
miscellaneous
problems Section
:
section
1.0 Problem
number
:
77 Date
solved
:
Monday, December 29, 2025 at 09:02:40 PM CAS
classification
:
[_quadrature]
2.1.77.1 Solved using first_order_ode_autonomous
2.754 (sec)
Entering first order ode autonomous solver
\begin{align*}
x^{\prime }&=4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x \\
\end{align*}
Integrating gives
\begin{align*} \int \frac {1}{4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 x k}d x &= dt\\ \frac {-\frac {\ln \left (256 A -81 x \right )}{3}+\frac {\ln \left (9 \sqrt {\frac {x}{A}}+16\right )}{3}-\frac {\ln \left (9 \sqrt {\frac {x}{A}}-16\right )}{3}-\frac {2 \ln \left (3 \left (\frac {x}{A}\right )^{{1}/{4}}-4\right )}{3}+\frac {2 \ln \left (3 \left (\frac {x}{A}\right )^{{1}/{4}}+4\right )}{3}}{k}&= t +c_1 \end{align*}
Singular solutions are found by solving
\begin{align*} 4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 x k&= 0 \end{align*}
for \(x\). This is because we had to divide by this in the above step. This gives the following singular
solution(s), which also have to satisfy the given ODE.
\begin{align*} x = 0\\ x = \frac {256 A}{81} \end{align*}
The following diagram is the phase line diagram. It classifies each of the above equilibrium
points as stable or not stable or semi-stable.
We assume there exists a function \(\phi \left ( x,y\right ) =c\) where \(c\) is constant, that
satisfies the ode. Taking derivative of \(\phi \) w.r.t. \(x\) gives
But since \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) then for the above to be valid, we require that
If the above condition is satisfied, then
the original ode is called exact. We still need to determine \(\phi \left ( x,y\right ) \) but at least we know now that we can
do that since the condition \(\frac {\partial ^{2}\phi }{\partial x\partial y}=\frac {\partial ^{2}\phi }{\partial y\partial x}\) is satisfied. If this condition is not satisfied then this method will not
work and we have to now look for an integrating factor to force this condition, which might or
might not exist. The first step is to write the ODE in standard form to check for exactness, which
is
Since \(\frac {\partial M}{\partial x} \neq \frac {\partial N}{\partial t}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating
factor to make it exact. Let
\(M\) and \(N\) are now multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\overline {M}\) and \(\overline {N}\) so
not to confuse them with the original \(M\) and \(N\).
\begin{align*} \overline {M} &=\mu M \\ &= \frac {1}{\left (\frac {x}{A}\right )^{{3}/{4}} \left (3 \left (\frac {x}{A}\right )^{{1}/{4}}-4\right )}\left (-4 A k \left (\frac {x}{A}\right )^{{3}/{4}}+3 x k\right ) \\ &= -\frac {4 k \left (A \left (\frac {x}{A}\right )^{{3}/{4}}-\frac {3 x}{4}\right )}{\left (\frac {x}{A}\right )^{{3}/{4}} \left (3 \left (\frac {x}{A}\right )^{{1}/{4}}-4\right )} \end{align*}
Where \(f(x)\) is used for the constant of integration since \(\phi \) is a function of
both \(t\) and \(x\). Taking derivative of equation (3) w.r.t \(x\) gives
But
since \(\phi \) itself is a constant function, then let \(\phi =c_2\) where \(c_2\) is new constant and combining \(c_1\) and \(c_2\) constants
into the constant \(c_1\) gives the solution as
\begin{align*}
x &= \frac {\left ({\mathrm e}^{-\frac {3 \left (A k t -c_1 \right )}{4 A}}+4\right )^{4} A}{81} \\
\end{align*}
Summary of solutions found
\begin{align*}
x &= \frac {\left ({\mathrm e}^{-\frac {3 \left (A k t -c_1 \right )}{4 A}}+4\right )^{4} A}{81} \\
\end{align*}
2.1.77.3 Solved using first_order_ode_dAlembert
110.809 (sec)
Entering first order ode dAlembert solver
\begin{align*}
x^{\prime }&=4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 k x \\
\end{align*}
Let \(p=x^{\prime }\) the ode becomes
\begin{align*} p = 4 A k \left (\frac {x}{A}\right )^{{3}/{4}}-3 x k \end{align*}
Solving for \(x\) from the above results in
\begin{align*}
\tag{1} x &= {\left (\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \right )^{3}\right )}^{{4}/{3}} A \\
\end{align*}
This has the form
\begin{align*} x=t f(p)+g(p)\tag {*} \end{align*}
Where \(f,g\) are functions of \(p=x'(t)\). The above ode is dAlembert ode which is now solved.
Comparing the form \(x=t f + g\) to (1A) shows that
\begin{align*} f &= 0\\ g &= \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \right )^{3} {\left (\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \right )^{3}\right )}^{{1}/{3}} A \end{align*}
Hence (2) becomes
\begin{equation}
\tag{2A} p = \left (-\frac {3 \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \right )^{2} {\left (\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \right )^{3}\right )}^{{1}/{3}} A}{12 A k \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \right )^{3}-12 A k \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \right )^{2}}-\frac {\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \right )^{5} A}{{\left (\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \right )^{3}\right )}^{{2}/{3}} \left (12 A k \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \right )^{3}-12 A k \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \right )^{2}\right )}\right ) p^{\prime }\left (t \right )
\end{equation}
The singular solution is found by setting \(\frac {dp}{dt}=0\) in the above which gives
\begin{align*} p = 0 \end{align*}
No valid singular solutions found.
The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}t}}\neq 0\). From eq. (2A). This results in
\begin{equation}
\tag{3} p^{\prime }\left (t \right ) = \frac {p \left (t \right )}{-\frac {3 \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \left (t \right )\right )^{2} {\left (\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \left (t \right )\right )^{3}\right )}^{{1}/{3}} A}{12 A k \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \left (t \right )\right )^{3}-12 A k \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \left (t \right )\right )^{2}}-\frac {\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \left (t \right )\right )^{5} A}{{\left (\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \left (t \right )\right )^{3}\right )}^{{2}/{3}} \left (12 A k \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \left (t \right )\right )^{3}-12 A k \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \left (t \right )\right )^{2}\right )}}
\end{equation}
This ODE is now solved for \(p \left (t \right )\).
No inversion is needed.
Unable to integrate (or intergal too complicated), and since no initial conditions are given, then
the result can be written as
\[ \int _{}^{p \left (t \right )}-\frac {16 A k \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )^{3}-3 \tau \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )-4 \tau }{27 \tau {\left (\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )^{3}\right )}^{{2}/{3}} A \,k^{2} \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )^{2} \left (\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )-1\right )}d \tau = t +c_1 \]
Singular solutions are found by solving
\begin{align*} -\frac {27 p {\left (\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \right )^{3}\right )}^{{2}/{3}} A \,k^{2} \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \right )^{2} \left (\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \right )-1\right )}{16 A k \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \right )^{3}-3 p \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+p \right )-4 p}&= 0 \end{align*}
for \(p \left (t \right )\). This is because we had to divide by this in the above step. This gives the following singular
solution(s), which also have to satisfy the given ODE.
\begin{align*} p \left (t \right ) = 0 \end{align*}
Substituing the above solution for \(p\) in (2A) gives
\begin{align*}
x &= \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}-\frac {16 A k \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )^{3}-3 \tau \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )-4 \tau }{27 \tau {\left (\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )^{3}\right )}^{{2}/{3}} A \,k^{2} \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )^{2} \left (\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )-1\right )}d \tau +t +c_1 \right )\right )^{3} {\left (\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}-\frac {16 A k \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )^{3}-3 \tau \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )-4 \tau }{27 \tau {\left (\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )^{3}\right )}^{{2}/{3}} A \,k^{2} \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )^{2} \left (\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )-1\right )}d \tau +t +c_1 \right )\right )^{3}\right )}^{{1}/{3}} A \\
x &= \operatorname {RootOf}\left (\textit {\_Z}^{3} \left (3 \textit {\_Z} -4\right )\right )^{3} {\left (\operatorname {RootOf}\left (\textit {\_Z}^{3} \left (3 \textit {\_Z} -4\right )\right )^{3}\right )}^{{1}/{3}} A \\
\end{align*}
\begin{align*}
x &= 0 \\
x &= 0 \\
x &= 0 \\
x &= \frac {64 \,64^{{1}/{3}} 27^{{2}/{3}} A}{729} \\
\end{align*}
The solution \(x = \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}-\frac {16 A k \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )^{3}-3 \tau \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )-4 \tau }{27 \tau {\left (\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )^{3}\right )}^{{2}/{3}} A \,k^{2} \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )^{2} \left (\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )-1\right )}d \tau +t +c_1 \right )\right )^{3} {\left (\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}-\frac {16 A k \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )^{3}-3 \tau \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )-4 \tau }{27 \tau {\left (\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )^{3}\right )}^{{2}/{3}} A \,k^{2} \operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )^{2} \left (\operatorname {RootOf}\left (3 k A \,\textit {\_Z}^{4}-4 k A \,\textit {\_Z}^{3}+\tau \right )-1\right )}d \tau +t +c_1 \right )\right )^{3}\right )}^{{1}/{3}} A\)
simplifies to
\begin{align*}
\text {Expression too large to display} \\
\text {Expression too large to display} \\
\text {Expression too large to display} \\
\text {Expression too large to display} \\
\end{align*}
The above solution was found not to satisfy the ode or the IC. Hence it is
removed.
The above solution was found not to satisfy the ode or the IC. Hence it is removed.
The above solution was found not to satisfy the ode or the IC. Hence it is removed.
The above solution was found not to satisfy the ode or the IC. Hence it is removed.
Summary of solutions found
\begin{align*}
x &= 0 \\
x &= 0 \\
x &= 0 \\
x &= \frac {64 \,64^{{1}/{3}} 27^{{2}/{3}} A}{729} \\
\end{align*}
2.1.77.4 ✓Maple. Time used: 0.002 (sec). Leaf size: 85
Methodsfor first order ODEs:---Trying classification methods ---tryinga quadraturetrying1st order lineartryingBernoullitryingseparable<-separable successful
2.1.77.5 ✓Mathematica. Time used: 0.234 (sec). Leaf size: 51