2.1.29 Problem 30
Internal
problem
ID
[10015]
Book
:
Own
collection
of
miscellaneous
problems
Section
:
section
1.0
Problem
number
:
30
Date
solved
:
Monday, December 29, 2025 at 08:50:45 PM
CAS
classification
:
[[_homogeneous, `class C`], _rational, _dAlembert]
2.1.29.1 Solved using first_order_ode_dAlembert
0.737 (sec)
Entering first order ode dAlembert solver
\begin{align*}
y&=x {y^{\prime }}^{2}+{y^{\prime }}^{2} \\
\end{align*}
Let \(p=y^{\prime }\) the ode becomes \begin{align*} y = x \,p^{2}+p^{2} \end{align*}
Solving for \(y\) from the above results in
\begin{align*}
\tag{1} y &= x \,p^{2}+p^{2} \\
\end{align*}
This has the form \begin{align*} y=x f(p)+g(p)\tag {*} \end{align*}
Where \(f,g\) are functions of \(p=y'(x)\). The above ode is dAlembert ode which is now solved.
Taking derivative of (*) w.r.t. \(x\) gives
\begin{align*} p &= f+(x f'+g') \frac {dp}{dx}\\ p-f &= (x f'+g') \frac {dp}{dx}\tag {2} \end{align*}
Comparing the form \(y=x f + g\) to (1A) shows that
\begin{align*} f &= p^{2}\\ g &= p^{2} \end{align*}
Hence (2) becomes
\begin{equation}
\tag{2A} -p^{2}+p = \left (2 x p +2 p \right ) p^{\prime }\left (x \right )
\end{equation}
The singular solution is found by setting \(\frac {dp}{dx}=0\) in the above which gives
\begin{align*} -p^{2}+p = 0 \end{align*}
Solving the above for \(p\) results in
\begin{align*} p_{1} &=0\\ p_{2} &=1 \end{align*}
Substituting these in (1A) and keeping singular solution that verifies the ode gives
\begin{align*} y = 0\\ y = 1+x \end{align*}
The general solution is found when \( \frac { \mathop {\mathrm {d}p}}{\mathop {\mathrm {d}x}}\neq 0\). From eq. (2A). This results in
\begin{equation}
\tag{3} p^{\prime }\left (x \right ) = \frac {-p \left (x \right )^{2}+p \left (x \right )}{2 p \left (x \right ) x +2 p \left (x \right )}
\end{equation}
This ODE is now solved for \(p \left (x \right )\).
No inversion is needed.
The ode
\begin{equation}
p^{\prime }\left (x \right ) = -\frac {p \left (x \right )-1}{2 \left (1+x \right )}
\end{equation}
is separable as it can be written as \begin{align*} p^{\prime }\left (x \right )&= -\frac {p \left (x \right )-1}{2 \left (1+x \right )}\\ &= f(x) g(p) \end{align*}
Where
\begin{align*} f(x) &= \frac {1}{1+x}\\ g(p) &= -\frac {p}{2}+\frac {1}{2} \end{align*}
Integrating gives
\begin{align*}
\int { \frac {1}{g(p)} \,dp} &= \int { f(x) \,dx} \\
\int { \frac {1}{-\frac {p}{2}+\frac {1}{2}}\,dp} &= \int { \frac {1}{1+x} \,dx} \\
\end{align*}
\[
-2 \ln \left (-p \left (x \right )+1\right )=\ln \left (1+x \right )+c_1
\]
Taking the exponential of both sides the solution becomes\[
\frac {1}{\left (-p \left (x \right )+1\right )^{2}} = \left (1+x \right ) c_1
\]
We now need to find
the singular solutions, these are found by finding for what values \(g(p)\) is zero, since we had to divide
by this above. Solving \(g(p)=0\) or \[
-\frac {p}{2}+\frac {1}{2}=0
\]
for \(p \left (x \right )\) gives \begin{align*} p \left (x \right )&=1 \end{align*}
Now we go over each such singular solution and check if it verifies the ode itself and any initial
conditions given. If it does not then the singular solution will not be used.
Therefore the solutions found are
\begin{align*}
\frac {1}{\left (-p \left (x \right )+1\right )^{2}} &= \left (1+x \right ) c_1 \\
p \left (x \right ) &= 1 \\
\end{align*}
Substituing the above solution for \(p\) in (2A) gives \begin{align*}
y &= \frac {x \left (\sqrt {c_1 x +c_1}+1\right )^{2}}{c_1 x +c_1}+\frac {\left (\sqrt {c_1 x +c_1}+1\right )^{2}}{c_1 x +c_1} \\
y &= 1+x \\
\end{align*}
Simplifying
the above gives \begin{align*}
y &= 0 \\
y &= 1+x \\
y &= \frac {\left (\sqrt {\left (1+x \right ) c_1}+1\right )^{2}}{c_1} \\
y &= 1+x \\
\end{align*}
Summary of solutions found
\begin{align*}
y &= 0 \\
y &= \frac {\left (\sqrt {\left (1+x \right ) c_1}+1\right )^{2}}{c_1} \\
y &= 1+x \\
\end{align*}
2.1.29.2 Solved using first_order_ode_parametric method
0.622 (sec)
Entering first order ode parametric solver
\begin{align*}
y&=x {y^{\prime }}^{2}+{y^{\prime }}^{2} \\
\end{align*}
Let \(y^{\prime }\) be a parameter \(\lambda \). The ode becomes
\begin{align*} -x \,\lambda ^{2}-\lambda ^{2}+y = 0 \end{align*}
Isolating \(y\) gives
\begin{align*} y&=x \,\lambda ^{2}+\lambda ^{2}\\ &=\lambda ^{2} \left (1+x \right )\\ &=F \left (x , \lambda \right ) \end{align*}
Now we generate an ode in \(x \left (\lambda \right )\) using
\begin{align*} \frac {d}{d \lambda }x \left (\lambda \right ) &= \frac { \frac {\partial F}{\partial \lambda }} { \lambda -\frac {\partial F}{\partial x} } \\ &= \frac {2 \lambda x +2 \lambda }{-\lambda ^{2}+\lambda }\\ &= \frac {-2-2 x \left (\lambda \right )}{\lambda -1} \end{align*}
Which is now solved for \(x\).
Entering first order ode linear solverIn canonical form a linear first order is
\begin{align*} \frac {d}{d \lambda }x \left (\lambda \right ) + q(\lambda )x \left (\lambda \right ) &= p(\lambda ) \end{align*}
Comparing the above to the given ode shows that
\begin{align*} q(\lambda ) &=\frac {2}{\lambda -1}\\ p(\lambda ) &=-\frac {2}{\lambda -1} \end{align*}
The integrating factor \(\mu \) is
\begin{align*} \mu &= e^{\int {q\,d\lambda }}\\ &= {\mathrm e}^{\int \frac {2}{\lambda -1}d \lambda }\\ &= \left (\lambda -1\right )^{2} \end{align*}
The ode becomes
\begin{align*}
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}\lambda }}\left ( \mu x\right ) &= \mu p \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}\lambda }}\left ( \mu x\right ) &= \left (\mu \right ) \left (-\frac {2}{\lambda -1}\right ) \\
\frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}\lambda }} \left (x \left (\lambda -1\right )^{2}\right ) &= \left (\left (\lambda -1\right )^{2}\right ) \left (-\frac {2}{\lambda -1}\right ) \\
\mathrm {d} \left (x \left (\lambda -1\right )^{2}\right ) &= \left (-2 \lambda +2\right )\, \mathrm {d} \lambda \\
\end{align*}
Integrating gives \begin{align*} x \left (\lambda -1\right )^{2}&= \int {-2 \lambda +2 \,d\lambda } \\ &=-\lambda ^{2}+2 \lambda + c_1 \end{align*}
Dividing throughout by the integrating factor \(\left (\lambda -1\right )^{2}\) gives the final solution
\[ x \left (\lambda \right ) = \frac {-\lambda ^{2}+c_1 +2 \lambda }{\left (\lambda -1\right )^{2}} \]
Now that we found
solution \(x\) we have two equations with parameter \(\lambda \). They are \begin{align*}
y &= \lambda ^{2} \left (1+x \right ) \\
x &= \frac {-\lambda ^{2}+c_1 +2 \lambda }{\left (\lambda -1\right )^{2}} \\
\end{align*}
Eliminating \(\lambda \) gives the solution for
\(y\).
Summary of solutions found
\begin{align*}
y &= c_1 +x +2-2 \sqrt {\left (1+x \right ) \left (1+c_1 \right )} \\
y &= c_1 +x +2+2 \sqrt {\left (1+x \right ) \left (1+c_1 \right )} \\
\end{align*}
2.1.29.3 ✓ Maple. Time used: 0.022 (sec). Leaf size: 53
ode:=y(x) = diff(y(x),x)^2*x+diff(y(x),x)^2;
dsolve(ode,y(x), singsol=all);
\begin{align*}
y &= 0 \\
y &= \frac {\left (x +1+\sqrt {\left (x +1\right ) \left (1+c_1 \right )}\right )^{2}}{x +1} \\
y &= \frac {\left (-x -1+\sqrt {\left (x +1\right ) \left (1+c_1 \right )}\right )^{2}}{x +1} \\
\end{align*}
Maple trace
Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful
Maple step by step
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y \left (x \right )=x \left (\frac {d}{d x}y \left (x \right )\right )^{2}+\left (\frac {d}{d x}y \left (x \right )\right )^{2} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \left [\frac {d}{d x}y \left (x \right )=\frac {\sqrt {\left (x +1\right ) y \left (x \right )}}{x +1}, \frac {d}{d x}y \left (x \right )=-\frac {\sqrt {\left (x +1\right ) y \left (x \right )}}{x +1}\right ] \\ \bullet & {} & \textrm {Solve the equation}\hspace {3pt} \frac {d}{d x}y \left (x \right )=\frac {\sqrt {\left (x +1\right ) y \left (x \right )}}{x +1} \\ \bullet & {} & \textrm {Solve the equation}\hspace {3pt} \frac {d}{d x}y \left (x \right )=-\frac {\sqrt {\left (x +1\right ) y \left (x \right )}}{x +1} \\ \bullet & {} & \textrm {Set of solutions}\hspace {3pt} \\ {} & {} & \left \{\mathit {workingODE} , \mathit {workingODE}\right \} \end {array} \]
2.1.29.4 ✓ Mathematica. Time used: 0.039 (sec). Leaf size: 57
ode=y[x]==x*(D[y[x],x])^2+(D[y[x],x])^2;
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*} y(x)&\to x-c_1 \sqrt {x+1}+1+\frac {c_1{}^2}{4}\\ y(x)&\to x+c_1 \sqrt {x+1}+1+\frac {c_1{}^2}{4}\\ y(x)&\to 0 \end{align*}
2.1.29.5 ✓ Sympy. Time used: 0.578 (sec). Leaf size: 19
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-x*Derivative(y(x), x)**2 + y(x) - Derivative(y(x), x)**2,0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
y{\left (x \right )} = \frac {C_{1}^{2}}{4} - C_{1} \sqrt {x + 1} + x + 1
\]