Chapter 1
Lookup tables for all problems in current book

1.1 Chapter 3. Solutions of first-order equations. Exercises at page 47
1.2 Chapter 4. Autonomous systems. Exercises at page 69
1.3 Chapter 5. Linear equations. Exercises at page 85

1.1 Chapter 3. Solutions of first-order equations. Exercises at page 47

Table 1.1: Lookup table

ID

problem

ODE

Solved?

Maple

Mma

Sympy

19659

1 (i)

\begin{align*} x^{\prime }&=3 t^{2}+4 t \\ x \left (1\right ) &= 0 \\ \end{align*}

19660

1 (ii)

\begin{align*} x^{\prime }&=b \,{\mathrm e}^{t} \\ x \left (1\right ) &= 0 \\ \end{align*}

19661

1 (iii)

\begin{align*} x^{\prime }&=\frac {1}{t^{2}+1} \\ x \left (1\right ) &= 0 \\ \end{align*}

19662

1 (iv)

\begin{align*} x^{\prime }&=\frac {1}{\sqrt {t^{2}+1}} \\ x \left (1\right ) &= 0 \\ \end{align*}

19663

1 (v)

\begin{align*} x^{\prime }&=\cos \left (t \right ) \\ x \left (1\right ) &= 0 \\ \end{align*}

19664

1 (vi)

\begin{align*} x^{\prime }&=\frac {\cos \left (t \right )}{\sin \left (t \right )} \\ x \left (1\right ) &= 0 \\ \end{align*}

19665

2 (i)

\begin{align*} x^{\prime }&=x^{2}-3 x+2 \\ x \left (0\right ) &= 1 \\ \end{align*}

19666

2 (ii)

\begin{align*} x^{\prime }&=b \,{\mathrm e}^{x} \\ x \left (0\right ) &= 1 \\ \end{align*}

19667

2 (iii)

\begin{align*} x^{\prime }&=\left (x-1\right )^{2} \\ x \left (0\right ) &= 1 \\ \end{align*}

19668

2 (iv)

\begin{align*} x^{\prime }&=\sqrt {x^{2}-1} \\ x \left (0\right ) &= 1 \\ \end{align*}

19669

2 (v)

\begin{align*} x^{\prime }&=2 \sqrt {x} \\ x \left (0\right ) &= 1 \\ \end{align*}

19670

2 (vi)

\begin{align*} x^{\prime }&=\tan \left (x\right ) \\ x \left (0\right ) &= 1 \\ \end{align*}

19671

3 (i)

\begin{align*} 3 x t^{2}-x t +\left (3 t^{3} x^{2}+t^{3} x^{4}\right ) x^{\prime }&=0 \\ \end{align*}

19672

3 (ii)

\begin{align*} 1+2 x+\left (-t^{2}+4\right ) x^{\prime }&=0 \\ \end{align*}

19673

3 (iii)

\begin{align*} x^{\prime }&=\cos \left (\frac {x}{t}\right ) \\ \end{align*}

19674

3 (iv)

\begin{align*} \left (t^{2}-x^{2}\right ) x^{\prime }&=x t \\ \end{align*}

19675

3 (v)

\begin{align*} x^{\prime } {\mathrm e}^{3 t}+3 x \,{\mathrm e}^{3 t}&=2 t \\ \end{align*}

19676

3 (vi)

\begin{align*} 2 t +3 x+\left (3 t -x\right ) x^{\prime }&=t^{2} \\ \end{align*}

19677

4 (i)

\begin{align*} x^{\prime }+2 x&={\mathrm e}^{t} \\ \end{align*}

19678

4 (ii)

\begin{align*} x^{\prime }+x \tan \left (t \right )&=0 \\ \end{align*}

19679

4 (iii)

\begin{align*} x^{\prime }-x \tan \left (t \right )&=4 \sin \left (t \right ) \\ \end{align*}

19680

4 (iv)

\begin{align*} t^{3} x^{\prime }+\left (-3 t^{2}+2\right ) x&=t^{3} \\ \end{align*}

19681

4 (v)

\begin{align*} x^{\prime }+2 x t +t x^{4}&=0 \\ \end{align*}

19682

4 (vi)

\begin{align*} x^{\prime } t +x \ln \left (t \right )&=t^{2} \\ \end{align*}

19683

5

\begin{align*} x^{\prime } t +x g \left (t \right )&=h \left (t \right ) \\ \end{align*}

19684

6

\begin{align*} t^{2} x^{\prime \prime }-6 x^{\prime } t +12 x&=0 \\ \end{align*}

1.2 Chapter 4. Autonomous systems. Exercises at page 69

Table 1.3: Lookup table

ID

problem

ODE

Solved?

Maple

Mma

Sympy

19685

1

\begin{align*} x^{\prime }&=-\lambda x \\ \end{align*}

19686

2

\begin{align*} x^{\prime }\left (t \right )&=x \left (t \right ) \\ y^{\prime }\left (t \right )&=x \left (t \right )+2 y \left (t \right ) \\ \end{align*}

19687

3

\begin{align*} t^{2} x^{\prime \prime }-2 x^{\prime } t +2 x&=0 \\ \end{align*}

19688

5 (i)

\begin{align*} x^{\prime \prime }-5 x^{\prime }+6 x&=0 \\ \end{align*}

19689

5 (ii)

\begin{align*} x^{\prime \prime }-4 x^{\prime }+4 x&=0 \\ \end{align*}

19690

5 (iiI=i)

\begin{align*} x^{\prime \prime }-4 x^{\prime }+5 x&=0 \\ \end{align*}

19691

5 (iv)

\begin{align*} x^{\prime \prime }+3 x^{\prime }&=0 \\ \end{align*}

19692

6 (i)

\begin{align*} x^{\prime \prime }-3 x^{\prime }+2 x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

19693

6 (ii)

\begin{align*} x^{\prime \prime }+x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

19694

6 (iii)

\begin{align*} x^{\prime \prime }+2 x^{\prime }+x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

19695

6 (iv)

\begin{align*} x^{\prime \prime }-2 x^{\prime }+2 x&=0 \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

1.3 Chapter 5. Linear equations. Exercises at page 85

Table 1.5: Lookup table

ID

problem

ODE

Solved?

Maple

Mma

Sympy

19696

7 (i)

\begin{align*} x^{\prime \prime }-x&=t^{2} \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

19697

7 (ii)

\begin{align*} x^{\prime \prime }-x&={\mathrm e}^{t} \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

19698

7 (iii)

\begin{align*} x^{\prime \prime }+2 x^{\prime }+4 x&={\mathrm e}^{t} \cos \left (2 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

19699

7 (iv)

\begin{align*} x^{\prime \prime }-x^{\prime }+x&=\sin \left (2 t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

19700

7 (v)

\begin{align*} x^{\prime \prime }+4 x^{\prime }+3 x&=t \sin \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}

19701

7 (vi)

\begin{align*} x^{\prime \prime }+x&=\cos \left (t \right ) \\ x \left (0\right ) &= 0 \\ x^{\prime }\left (0\right ) &= 1 \\ \end{align*}