1.8 Obtain partial-fraction expansion
Problem: Given the continuous time S transfer function defined by
\[ H(s)=\frac {s^{4}+8s^{3}+16s^{2}+9s+9}{s^{3}+6s^{2}+11s+6}\]
obtain the
partial-fractions decomposition.
Comment: Mathematica result is easier to see visually since the partial-fraction
decomposition returned in a symbolic form.
Mathematica
Remove["Global`*"];
expr = (s^4+8 s^3+16 s^2+9 s+6)/
(s^3+6 s^2+11 s+6);
Apart[expr]
|
2 + s +3/(1+s) -4/(2+s) -6/(3+s)
|
Matlab
clear all;
s=tf('s');
tf_sys = (s^4+8*s^3+16*s^2+9*s+6)/...
(s^3+6*s^2+11*s+6);
[num,den] = tfdata(tf_sys,'v');
[r,p,k] = residue(num,den)
|
r =
-6.0000
-4.0000
3.0000
p =
-3.0000
-2.0000
-1.0000
k =
1 2
|
Maple
p:=(s^4+8*s^3+16*s^2+9*s+9)/(s^3+6*s^2+11*s+6);
p0:=convert(p,parfrac);
|
\[ s+2- \frac {7}{s+2}-{\frac {9}{2\,s+6}}+{\frac {9}{2\,s+2 }} \] |
[op(p0)];
| \[ [s,2,\frac {7}{s+2},-{\frac {9}{2\,s+6}},{\frac {9}{2\,s+2}}] \] |