1.31 Draw the root locus from the open loop transfer function
Problem: Given \(L(s)\), the open loop transfer function, draw the root locus. Let
\[ L(s)=\frac {s^2+2 s+4}{s(s+4)(s+6)(s^2+1.4 s+1)}\]
Root locus is the locus of the closed loop dominant pole as the gain \(k\) is varied from zero to
infinity.
Mathematica
Remove["Global`*"]
sys = TransferFunctionModel[
k*(s^2+2 s+4)/
(s(s+4)(s+6)(s^2+1.4s+1)),s];
RootLocusPlot[sys,{k,0,100},
ImageSize->300,
GridLines->Automatic,
GridLinesStyle->Dashed,
Frame->True,
AspectRatio -> 1]
|
|
Matlab
clear all; close all;
s=tf('s');
sys=(s^2+2*s+4)/...
(s*(s+4)*(s+6)*(s^2+1.4*s+1));
rlocus(sys,0:100)
set(gcf,'Position',[10,10,420,420]);
|
|