1.18 Solve the continuous-time algebraic Riccati equation
Problem: Solve for \(X\) in the Riccati equation
\[ A^{\prime }X+XA-XBR^{-1}B^{\prime }X+C^{\prime }C=0 \]
given
\begin{align*} A & =\begin {pmatrix} -3 & 2\\ 1 & 1 \end {pmatrix} \\ B & =\begin {pmatrix} 0\\ 1 \end {pmatrix} \\ C & =\begin {pmatrix} 1 & -1 \end {pmatrix} \\ R & =3 \end{align*}
Mathematica
Clear ["Global`*"];
a={{-3,2},{1,1}};
b={{0},{1}};
c={{1,-1}};
r={{3}};
sol=RiccatiSolve[{a,b},{Transpose[c].c,r}];
MatrixForm[N[sol]]
|
\[ \left ( {\begin {array}{cc} 0.589517 & 1.82157 \\ 1.82157 & 8.81884 \\ \end {array}} \right ) \] |
Matlab
%needs control system
clear all; close all;
a = [-3 2;1 1];
b = [0 ; 1];
c = [1 -1];
r = 3;
x = care(a,b,c'*c,r)
|
x =
0.5895 1.8216
1.8216 8.8188
|
Maple
restart;
A:=Matrix([[-3,2],[1,1]]);
B:=Vector([0,1]);
C:=Vector[row]([1,-1]);
Q:=C^%T.C;
R:=Matrix([[3]]);
LinearAlgebra:-CARE(A,B,Q,R)
|
\[ \left [\begin {array}{cc} 0.5895174373 & 1.8215747249 \\ 1.8215747249 & 8.8188398069 \end {array}\right ] \] |