11.22.1 Top new questions this week

11.22.1.1 Kernel crash during RegionDifference of complex 3D meshes + BoundaryMeshRegion::bsuncl error
11.22.1.2 Visualizing continuous functions defined on a unit circle
11.22.1.3 Plot the Vitruvian Man (or Woman)
11.22.1.4 How to release memory from parallel kernels?
11.22.1.5 How do you increase the precision and accuracy of the numerical approximation of the Volchov integral?
11.22.1.6 Why does RegionDifference fail for Rectangle with RoundingRadius
11.22.1.7 Mathematica code involving floor function
11.22.1.1 Kernel crash during RegionDifference of complex 3D meshes + BoundaryMeshRegion::bsuncl error

https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=314192

I'm modeling a screw rotor with cavities (for CAD/CFD analysis). The workflow involves: 
 
Generating the rotor body from 5 parametric surfaces. 
Creating cavity profiles from 4 extruded segments. 
... 
[regions] [mesh] [opencascade]
 
asked by kai29lol https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=99190 Score of 9
answered by cvgmt https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=72111 Score of 8
11.22.1.2 Visualizing continuous functions defined on a unit circle

https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=314183

Chebychev polynomials seem like may be better off visualized on a circle rather than horizontally. Code below uses an idea with  SectorChart3D  from an earlier post ... 
[visualization]
 
asked by Yaroslav Bulatov https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=217 Score of 9
answered by user136848 https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=102478 Score of 7
11.22.1.3 Plot the Vitruvian Man (or Woman)

https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=314157

Version 11 of Mathematica now includes anatomy. 
The Vitruvian Man by Da Vinci is famed for its symmetries and geometrical account of body proportions. 
 
Is it possible to change the anatomical ... 
[anatomy] [anatomyplot3d]
 
asked by Tomi https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=36939 Score of 9
answered by Greg Hurst https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=4346 Score of 18
11.22.1.4 How to release memory from parallel kernels?

https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=314220

I'm doing image processing in parallel kernels: 
(I'm sorry, but it is impossible to construct a MWE for this, so I am including this code to indicate what I am doing) 
... 
[front-end] [image-processing] [parallelization]
 
asked by Craig Carter https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=12461 Score of 7
answered by ihojnicki https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=18638 Score of 7
11.22.1.5 How do you increase the precision and accuracy of the numerical approximation of the Volchov integral?

https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=314159

There is a need to increase the number of correct decimal digits from this integral: 
... 
[numerical-integration] [precision-and-accuracy] [number-theory] [numerical-value] [prime-numbers]
 
asked by Mats Granvik https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=328 Score of 6
answered by Roman https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=26598 Score of 6
11.22.1.6 Why does RegionDifference fail for Rectangle with RoundingRadius

https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=314190

I am trying to produce a region with a hole in it by subtracting from a larger rectangle a smaller embedded rectangle. It works if the smaller rectangle has no rounding radius. But if the smaller ... 
[regions]
 
asked by David Keith https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=44700 Score of 6
answered by cvgmt https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=72111 Score of 8
11.22.1.7 Mathematica code involving floor function

https://mathematica.stackexchange.com/landing/r/digest?cta=question&id=314212

I am reading an interesting paper One of the numbers (5), (7), (9), (11) is irrational by Zudilin. We fix odd numbers $q$ and $r$, $q\geq r+4$ and a tuple $\eta_0,\eta_1,...,\eta_q$ of positive ... 
[calculus-and-analysis] [number-theory] [prime-numbers] [computational-complexity] [paper-reproduction]
 
asked by Max https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=91792 Score of 5
answered by ydd https://mathematica.stackexchange.com/landing/r/digest?cta=user&id=72953 Score of 5